
User Manual
Conic Optimization Solver v0.01a

Wolf Optimization

Wolf Optimization User Manual

2

Revision History

Revision Date Author(s) Description

0.01a 2021-Sep-21 NCP Initial α release of Wolf

3

Wolf Optimization User Manual

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 The conic optimization solver algorithm 9

1.2.1 Presolving the problem . 10
1.2.2 The initial point . 10
1.2.3 Scaling . 11
1.2.4 The search direction . 11
1.2.5 Computing the search direction 12
1.2.6 Determining the step length 17

2 APIs 19
2.1 C/C++ . 19

2.1.1 Simple interface . 19
2.2 MATLAB . 23

2.2.1 Installation . 23
2.2.2 Usage . 23
2.2.3 Help . 27

Bibliography 29

5

Wolf Optimization User Manual

6

Chapter 1

Introduction

This document provides an overview of the package functionality and a description
of the methods implemented.

1.1 Background

The conic optimization solver solves conic programs using a homogeneous primal-
dual path-following algorithm. The primal and dual conic programs are of the
form

minimize cTx

subject to Ax = b

x ∈ K
(1.1)

and

maximize bTy

subject to ATy + s = c

s ∈ K∗
(1.2)

where x are the primal variables, Ax = b are the primal constraints, x ∈ K are
the conic constraints, y are the dual variables, s are the dual slacks, and s ∈ K∗

represent the dual conic constraints. In order to be explicit in the following,
the primal conic program is expanded to show the division between the conic

7

Wolf Optimization User Manual

constraints explicitly:

minimize cTLxL + cTQxQ + cTRxR + cTPxP + cTFxF

subject to ALxL + AQxQ + ARxR + AFxF = b

xL ∈ RnL
+

xQ = (x
(1)
Q ; ...;x

(NQ)
Q), x

(k)
Q ∈ Qnk

Q , k = 1, ..., NQ

xR = (x
(1)
R ; ...;x

(NR)
R), x

(k)
R ∈ Rnk

R , k = 1, ..., NR

xP = (x
(1)
P ; ...;x

(NP)
P), x

(k)
P ∈ Pαk

, k = 1, ..., NP

xF ∈ RnF

, (1.3)

where, obviously, A = [AL, AQ, AQ, AP , AF] ∈ Rm×n, b ∈ Rm,c = (cL; cQ; cR; cP ; cF) ∈
Rn, R+ is the set of non-negative real numbers, Qd is the Lorentz or quadratic
cone of dimension d, Rd is the rotated quadratic cone of dimension d, Pα is the
three-dimensional power cone with exponent α, nL is the number of linear variables
(or the size of the linear cone), NQ the number of second-order cones, NR is the
number of rotated quadratic cones, NP is the number of three-dimensional power
cones, and nF is the number of free variables (or the size of the free cone).

The quadratic cone is defined as the set

Qd := {x = (x1, x̄)
T ∈ Rd, d ≥ 2 : x1 ≥

√
x̄T x̄}, (1.4)

the rotated quadratic cone is defined as the set

Rd := {x = (x1, x2, x̃)
T ∈ Rd, , d ≥ 3 : 2x1x2 ≥ x̃T x̃, x1 ≥ 0, x2 ≥ 0}, (1.5)

and the power cone is defined as the set

Pα := {x = (x1, x2, x3)
T , 0 < α < 1 : xα

1x
1−α
2 ≥ |x3|, x ∈ R3, x1 ≥ 0, x2 ≥ 0}.

(1.6)
Note that each variable can only and must be associated with one cone constraint.
Additionally, each cone constraint may consist of a number of primitive cone con-
straints of that type, so that there may be NQ conic quadratic constraints each of

size nk
Q, giving

∑NQ

k=1 n
k
Q total conic quadratic variables.

8

User Manual

The expanded dual to (1.3) is

maximise bTy

subject to AT
Ly + sL = cL

AT
Qy + sQ = cQ

AT
Ry + sR = cR

AT
Py + sP = cP

AT
Fy = cF

sL ∈ RnL
+

sQ = (s
(1)
Q ; ...; s

(NQ)
Q), s

(k)
Q ∈ Qnk

Q , k = 1, ..., NQ

sR = (s
(1)
R ; ...; s

(NR)
R), s

(k)
R ∈ Rnk

R , k = 1, ..., NR

sP = (s
(1)
P ; ...; s

(NP)
P), s

(k)
P ∈ P∗

αk
, k = 1, ..., NP

(1.7)

where y ∈ Rm, and P∗
α is the dual cone to Pα defined as

P∗
α := {s = (x1, x2, x3)

T , 0 < α < 1 : sTx ≥ 0∀x ∈ Pα}. (1.8)

The remaining cones are symmetric, which has the property that their dual cone is
the same as the original cone. Much of the initial research upon which the solver
is based is covered in Reference [6].

1.2 The conic optimization solver algorithm

The implemented algorithm is a simplified homogeneous self-dual predictor-corrector
primal-dual path-following interior-point method that traces a path through the
neighbourhood of the central path towards an optimal point. All iterates satisfy
the cone constraints but the feasibility in terms of the equality constraints is gen-
erally improved at each iteration at approximately the same rate as the reduction
in the average complementarity gap, µ.

9

Wolf Optimization User Manual

The algorithm proceeds a follows:

1. Set the initial point.

2. for 1 ≤ i ≤ imax

3. Build the Schur complement.

4. Compute the affine-scaling search direction.

5. Determine γ for combined centering-corrector direction.

6. Compute the combined centering-corrector search direction.

7. Determine the step length, α.

8. Update the variables.

9. Check for convergence and exit if achieved.

10. end

(1.9)

1.2.1 Presolving the problem

An effective presolve routine can provide significant reductions in runtime, as well
as improve the characteristics of the problem being solved without altering the
essence of the problem. The various components of a presolve routine are covered
below.

Eliminating free variables

Free variables often present numerical difficulties in the interior point method
and complicate the computation of the search direction (requiring a symmetric
indefinite solver or regularisation which affects the conditioning of the coefficient
matrix). Thus, it is worthwhile eliminating any free variables from the problem
where it can be done so without severely affecting the sparsity of the constraint
matrix.

Denote the columns of A associated with the free variables as AF and the remainder
as Ā, so A =

[
Ā AF

]
. If we can the find a non-singular basis of AF , we can

eliminate those columns and an equal number of rows from A. Call the basis we
identify in AF AB and let the remaining columns of AF be ÃF so AF =

[
ÃFAB

]
.

Let AN =
[
Ā ÃF

]
. We now have

1.2.2 The initial point

The initial point is chosen to satisfy the cone constraints as the minimum of
1
2
xTx + F (x), that is, where x = −F ′(x) and F (x) is the primal barrier function.

Specifically, each of the linear variables, x
(k)
L and s

(k)
L , are set to 1. For each

10

User Manual

primitive conic quadratic constraint, x
(k)
1 = s

(k)
1 =

√
2 and x̄(k) = s̄(k) = {0}.

The rotated quadratic conic variables are x
(k)
1 = x

(k)
2 = s

(k)
1 = s

(k)
2 = 1 and

x̃(k) = s̃(k) = {0}. The initial power cone variable values are x(k)
1 =

√
1 + α, x

(k)
2 =√

2− α, x
(k)
3 = 0 and s(k) = x(k). This also has the effect that µ0 =

xT s
ν

= 1, where
ν is the barrier parameter (1 for linear cone, 2 for the quadratic cones, and 3 for
the power cone).

1.2.3 Scaling

The Nesterov-Todd scaling [5, 1] is used for the symmetric cones, while the Tunçel
scaling [8] is used for the non-symmetric cones.

For each symmetric cone, the scaling of x is made to equal the inverse scaling of s.
The non-symmetric cone scaling formulations, however, lead to slightly different
inverse scalings.

For linear variables, the scaling is defined as dj =
√
sj/xj so that djxj = sj/dj =√

xjsj = vLj .

For the second-order cone variables, we set the scaling matrix W such that Wjxj =

W−1
j sj = vQj . This scaling matrix can be constructed by letting

wj =

{
w1

w2:nj

}
=

1√
2 (γ(xj)γ(sj) + xT s)

{
θ−1
j s1 + θjx1

θ−1
j s2:nj

− θjx2:nQ
j

}
,

where γ(xQ
j) =

√
x2
1 − ∥x2:nj

∥2 and θj =
√

γ(sj)/γ(xj).

1.2.4 The search direction

An affine-scaling (predictor) direction is computed first and then used to determine
the right hand side for the combined centering-corrector direction. The process
to compute the predictor and combined centering-corrector directions are very
similar, both being based on solving the following system of equations.

A −b
−c AT I

−cT bT −1
E F

κ τ

dx
dτ
dy
ds
dκ

 =

r1
r2
r3
r4
r5

 . (1.10)

11

Wolf Optimization User Manual

Here, the right hand side for the predictor is
r1
r2
r3
rP4
rP5

 =

(γ − 1) (Ax− bτ)

(γ − 1)
(
ATy + s− cτ

)
(γ − 1)

(
bTy − cTx− κ

)
γµe− svec (HG (XS))

γµ− τκ

 , (1.11)

(with γ = 0) which differs to the combined centering-corrector direction only in
the term for r4

r1
r2
r3
rC4
rC5

 =

(γ − 1) (Ax− bτ)

(γ − 1)
(
ATy + s− cτ

)
(γ − 1)

(
bTy − cTx− κ

)
γµe− svec (HG (XS) +HG (DxDs))

γµ− τκ− dτdκ

 . (1.12)

1.2.5 Computing the search direction

The approach usually taken is to reduce this system to either the augmented
equations or the Schur complement equation. This is done as follows. First,
dκ = 1

τ
(r5 − κdτ) and ds = F−1 (r4 − Edx) are eliminated, leaving−F−1E AT −c

A 0 −b
−cT b κ/τ

dx
dy
dτ

 =

r2 − F−1r4

r1
r3 + r5/τ

 .

We can then eliminate dx and dy from the last row. Taking{
dx
dy

}
=

[
−F−1E AT

A 0

]−1({
r2 − F−1r4

r1

}
+ dτ

{
c
b

})
, (1.13)

we get(
κ

τ
+

{
−c
b

}T [−F−1E AT

A 0

]−1{
c
b

})
dτ = r3+

r5
τ
−
{
−c
b

}T [−F−1E AT

A 0

]−1{
r2 − F−1r4

r1

}
.

(1.14)

If we obtain g1, g2, h1 and h2 from[
−F−1E AT

A 0

]{
g1
g2

}
=

{
c
b

}
(1.15)

12

User Manual

and [
−F−1E AT

A 0

]{
h1

h2

}
=

{
r2 − F−1r4

r1

}
, (1.16)

we can compute

dτ =
r3 + r5/τ + cTh1 − bTh2

κ/τ − cTg1 + bTg2
. (1.17)

We have thus reduced the problem to solving the augmented equations (1.15) and
(1.16). This leads to the two equations

AE−1FATg2 = b+ AE−1Fc (1.18)

and

AE−1FATh2 = r1 + A
(
E−1Fr2 − E−1r4

)
. (1.19)

For SDP, the right hand side for the predictor direction is equivalent to

A(G⊗s G)svec(GTmat(r2)G+D) (1.20)

and

A(G⊗s G)svec(GTmat(r2)G− γµD−1 +D) (1.21)

With g2 and h2, we can compute g1 and h1 fom the first block equation of (1.15)
and (1.16):

g1 = E−1F
(
ATg2 − c

)
(1.22)

h1 = E−1F
(
ATh2 − r2 + F−1r4

)
(1.23)

. From (1.13) we recover dx and dy,{
dx
dy

}
=

{
h1

h2

}
+ dτ

{
g1
g2

}
. (1.24)

To avoid increasing dual infeasibility, we use the second block equation from (1.10)
to get ds,

ds = r2 + cdτ − ATdy. (1.25)

Finally, dκ is computed from the last row of (1.10)

dκ =
r5 − κdτ

τ
. (1.26)

13

Wolf Optimization User Manual

Assembling the Schur complement

Before solving (1.18) and (1.19), we must assemble and factorize the coefficient
matrix known as the Schur complement, AE−1FAT . The approach for both the
semidefinite and the second-order cones are different to that of the linear and free
cones.

Columns of A associated with a linear or free variable For the linear and
regularized free variables, E−1F is diagonal and easily computed. This makes it
possible to perform nL+nF symmetric rank 1 outer product updates to the Schur
complement:

ML +MF =

(
nL∑
j=1

θ−2
Lj aLja

T
Lj

)
+ ϵ−1

(
nF∑
j=1

aFja
T
Fj

)
,

where ϵ is the regularization parameter.

Columns of A associated with a variable constrained by a second-order

cone E−1F for the kth second-order cone can be written asQk−2Qkwkwk
(
Qk
)T

,
where Q is a diagonal matrix with entries ±1. This means that we perform a sym-
metric rank 1 outer product for each cone and another for each column associated
with second-order cone, giving nk

Q + 1 symmetric rank 1 outer products:

Mk
Q = θ−2

Qk

akQj

(
akQj

)T −
nk
Q∑

j=2

akQj

(
akQj

)T+ 2θ−2
Qk

(
Ak

QQ
kwk

) (
Ak

QQ
kwk

)T
.

Each of the Mk
Q are summed to form MQ.

Exploiting fixed variables subject to a second-order cone constraint

If a free variable or linear variable is fixed when considering one or more of the
constraint equations, then it may be substituted out of the problem (assuming, if
it is a linear variable, that it is non-negative). If the variable is associated with a
second-order cone constraint, however, then it is not as straightforward. Starting
from (1.15) and letting H = F−1E, we partition the block 2× 2 system (and scale
if necessary) so that

−H11 −H12 0 I
−H21 −H22 AT

12 0
0 A12 0 0
I 0 0 0

g
(1)
1

g
(2)
1

g
(1)
2

g
(2)
2

 =

c(1)

c(2)

b(1)

b(2)

 (1.27)

14

User Manual

and the entries of g1 that are fixed in the first partition, g
(1)
1 . From the fourth

block row, we have g
(1)
1 = b(2). We then consider the second and third block

equations [
−H22 AT

12

A12 0

]{
g
(2)
1

g
(1)
2

}
=

{
c(2) +H21b

(2)

b(1)

}
. (1.28)

We can then reduce this system to the Schur complement by noting that

H22 = Q22 + 2wT
2 w

T
2 (1.29)

and, considering that for a second-order cone Q is a diagonal matrix and Q−1 = Q
which holds for any submatrix also, we can use the Sherman-Morrison-Woodbury
formula to get

H−1
22 = −Q22 − 2

Q22w2w
T
2 Q22

1− 2wT
2 Q22w2

. (1.30)

This form is very similar to that of H−1 = E−1F and so the Schur complement can
be constructed just as cheaply. So we then solve (1.28) by computing the Schur
complement and solving

A12H
−1
22 A

T
12g

(1)
2 = b(1) + A12H

−1
22

(
c(2) +H21b

(2)
)

(1.31)

for g
(1)
2 , and then using the same explicit form for H−1

22 to obtain g
(2)
1 from

H22g
(2)
1 = AT

12g
(1)
2 − c(2) −H21b

(2). (1.32)

Finally, we compute g
(2)
2 = c(1) +H11b

(2) +H12g
(2)
1 .

The process is identical to solve (1.16) albeit with a different right-hand side. Both
systems require three operations with the partitioned F−1E; first the matrix-vector
multiply of the form H21b

(2), then another with the inverse of H22 in the form
H−1

22 c
(2), and finally H11g

(1)
1 +H12g

(2)
1 .

Handling dense columns

In some problems, dense columns are present in the constraint matrix, A. This can
lead to a significantly more dense Schur complement matrix than would otherwise
be the case. It is thus common practice to avoid including the dense column when
forming the Schur complement matrix [2, 4]. The approach used here varies in the
implementation described in the literature so it can be used for variables in the
conic quadratic, linear, and free cones.

The approach starts with by considering augmented equations with the dense
columns of A arranged so as AD holds the dense columns and A0 is the remained

15

Wolf Optimization User Manual

of A. These dense columns are identified by comparing the number of entries
in each column against the average column count. If a column is above a user-
specified multiple of the average, then the column is deemed dense. The (1, 1)
block is arranged to match the split. We then have−H0 AT

0

−HD AT
D

A0 AD

g
(0)
1

g
(D)
1

g2

 =

c(0)

c(D)

b

 . (1.33)

By eliminating g
(0)
1 , we can proceed to solve the 2× 2 system that is now of order

m+ nD, where nD is the number of dense columns:[
−HD AT

D

AD M

]{
g
(D)
1

g2

}
=

{
c(D)

b+ A0H
−1
0 c(0)

}
, (1.34)

where M = A0H
−1
0 AT

0 . Eliminating g2 = M−1
(
b+ A0H

−1
0 c(0) − ADg

(D)
1

)
now

gives us

−
(
HD + AT

DM
−1AD

)
g
(D)
1 = c(D) − AT

DM
−1
(
b+ A0H

−1
0 c(0)

)
. (1.35)

Although there are three places where M−1 is used, if we consider the same equa-
tion but with the Cholesky factorization M = LLT , we have

−
(
HD + AT

DL
−TL−1AD

)
g
(D)
1 = c(D) − AT

DL
−TL−1

(
b+ A0H

−1
0 c(0)

)
, (1.36)

and we see that we only need to do three triangular solves (that is, with L) rather

than the three full solves with M , with g2 = L−TL−1
(
b+ A0H

−1
0 c(0) − ADg

(D)
1

)
=

L−T
(
r − V g

(D)
1

)
.

We should take into account, however, that we are going to solve for two different
right hand sides in computing the predictor direction for the homogeneous self-
dual embedding and one for the combined centering-corrector. For simplicity, we
describe solving with just one right hand side. The steps are as follows:

1. Compute the Cholesky factorization LLT = M .

2. Solve LV = AD for V .

3. Solve Lr =
(
b+ A0H

−1
0 c(0)

)
for r.

16

User Manual

4. Solve
(
HD + V TV

)
g
(D)
1 =

(
V T r − c(D)

)
for g

(D)
1 .

5. Solve LTg2 =
(
r − V g

(D)
1

)
for g2.

6. Solve −H0g
(0)
1 = c(0) + AT

0 g2 for g
(0)
1 .

After unpermuting we can then continue to compute the search direction for the
remaining variables.

Dealing with fixed variables and dense columns simultaneously

If we have both fixed variables and dense columns in the same problem then,
merging the above notation, we have

−H11 −H12 −H13 0 I
−H21 −H0 0 AT

S 0
−H31 0 −HD AT

D 0
0 A0 AD 0 0
I 0 0 0 0

g
(1)
1

g
(2)
1

g
(D)
1

g
(1)
2

g
(2)
2

=

c(1)

c(2)

c(D)

b(1)

b(2)

 . (1.37)

First we can eliminate the fixed variables g
(1)
1 = b(2), then consider the second,

third and fourth block rows.−H0 0 AT
S

0 −HD AT
D

A0 AD 0

g
(2)
1

g
(D)
1

g
(1)
2

 =

c(2) +H21b

(2)

c(D) +H31b
(2)

b(1)

 . (1.38)

This system only differs from the dense column situation above only in the right
hand side and so we can follow the same process. From the first block row we then
compute g

(2)
2 = c(1) +H11g

(1)
1 +H12g

(2)
1 +H13g

(D)
1 .

1.2.6 Determining the step length

Interior-point methods rely on all iterates maintaining feasibility with respect to
their conic constraints. In order to achieve this, checks must be made to ensure
that this remains so by limiting the step length in the search direction. The
approach used here requires that the iterates remain within some neighbourhood
of the central path and follows the basic approach of Andersen et al. [1], which is
based on the work of Nesterov and Todd [5] for all cones and has been generalized
to non-symmetric cones by Tunçel [8].

17

Wolf Optimization User Manual

18

Chapter 2

APIs

To use the Wolf conic optimization solver, wrappers in the most common languages
have been developed. These wrappers aim to simplify the use and provide a more
native feel for each language.

2.1 C/C++

There are two interfaces provided for C/C++. There is a simple interface for
solving one off problems and expert interfaces that allow a series of problems with
different values to be solved without repeating the initialisation and allocation
procedures each time. There are only two files required to use the library from
C/C++, the header file describing the interface, wolf.h, and the dynamically
linked library wolfcos.dll and wolfcos.lib on Windows or wolfcos.a on Linux,
BSDs, or OS X.

2.1.1 Simple interface

The simple interface is a collection of three calls.

1. wolf setpar(wolf problem t *problem); This sets the default parameters
so you can see what parameter values will be used and change them if you
desire.

2. wolf cos(wolf problem t *problem); This solves the problem.

3. const char * wolf geterrormsg(integer error); This function returns
a human readable string associated with the error code.

19

Wolf Optimization User Manual

The type wolf problem t collects all the information on the problem formulation
and the solution produced. The following must be allocated and input values
present before calling wolf cos():

� wolf problem t.m - the number of rows in the constraint matrix A

� wolf problem t.n - the number of columns in the constraint matrix A

� wolf problem t.nF - the number of free variables in the problem

� wolf problem t.nL - the number of linear variables in the problem

� wolf problem t.nQ - the number of second-order cones in the problem

� wolf problem t.nR - the number of rotated second-order cones in the prob-
lem

� wolf problem t.nP - the number of power cones in the problem

� wolf problem t.pQ - a pointer to the first entry in each second-order cone,
with the last entry equal to the position after the last second-order cone vari-
able (i.e. wolf problem t.pQ[wolf problem t.nR]-wolf problem t.pQ[0]

is the total count of all variables constrained by a second-order cone)

� wolf problem t.pR - a pointer to the first entry in each rotated second-order
cone, with the last entry equal to the position after the last rotated second-
order cone variable (i.e. wolf problem t.pR[wolf problem t.nR]-wolf problem t.pR[0]

is the total count of all variables constrained by a rotated second-order cone)

� wolf problem t.PCalpha - array of exponents α for each power cone in the
problem

� wolf problem t.pA - array of pointers to the first entry in each column of
iA and xA for the CSC structure of the constraint matrix A

� wolf problem t.iA - array of row indices for the CSC structure of the con-
straint matrix A

� wolf problem t.xA - array of values for the CSC structure of the constraint
matrix A

� wolf problem t.b - the right-hand side vector for the equality constraints b

� wolf problem t.c - the linear objective function c

� wolf problem t.x - the primal solution vector x

� wolf problem t.y - the dual solution vector y

20

User Manual

� wolf problem t.s - the dual slacks vector s

C example (simple interface)

The following code, when compiled, will solve the problem min
{
x1 : x1 ≥

√
x2
2 + x2

3, x3 = 1
}
.

#include ”wol f . h”
#include <s t d i o . h>

stat ic int p r i n t p r o g r e s s (integer i t e r a t i o n , double *dnfo)
{

/* Output progre s s update . */
p r i n t f (”%3i %8.1 e %8.1e %8.1e %8.1e %11.4 e %11.4 e %7.3 f %8.1e

%8.1 e %7.1 f \n” , (int) i t e r a t i o n , dnfo [0] , dnfo [1] , dnfo
[2] , dnfo [3] , dnfo [4] , dnfo [5] , dnfo [6] , dnfo [7] , dnfo [8] ,
dnfo [9]) ;

return 0 ;
}
int main ()
{

/* Set up problem s t r u c t . */
wo l f c o s t prob ;
prob .m = 1 ;
prob . n = 3 ;
prob . nF = 0 ;
prob . nL = 0 ;
prob .nQ = 1 ;
prob .nR = 0 ;
prob . nS = 0 ;
prob . nP = 0 ;
prob . nE = 0 ;

integer pQ[2] = { 0 , 3 } ;
integer pA [4] = { 0 , 0 , 0 , 1 } ;
integer iA [1] = { 0 } ;
double xA [1] = { 1 .0 } ;
double b [1] = { 1 .0 } ;
double c [3] = { 1 . 0 , 0 . 0 , 0 . 0 } ;

double x [3] , y [1] , s [3] ;

prob . x = x ;
prob . y = y ;
prob . s = s ;

21

Wolf Optimization User Manual

prob .pQ = pQ;
prob .pA = pA;
prob . iA = iA ;
prob .xA = xA;
prob . b = b ;
prob . c = c ;

/* Set d e f a u l t parameters . */
wo l f s e t p a r (&prob) ;

/* Modify d e f a u l t parameters . */
prob . i pa r [WOLF COS IS MAXITER] = 99 ;

/* Output progre s s header . */
p r i n t f (”\nWolf Conic Optimizat ion So lve r \n\n”) ;
p r i n t f (” I t p i n f d i n f g i n f u pobj

dobj alpha tau kappa time\n”) ;

/* So lve the problem . */
wo l f c o s (&prob , p r i n t p r o g r e s s) ;

/* Check f o r error and d i s p l a y message . */
i f (prob . e r r o r != 0)

p r i n t f (”*** %s ***\n” , wo l f g e t e r ro rmsg (prob . e r r o r)) ;

p r i n t f (”\ nSo lut ion i n f o :\n==============\n”) ;
p r i n t f (”Average ob j e c t i v e : %9.7 f \n” , 0 . 5* (prob . dnfo [0] + prob

. dnfo [1])) ;
p r i n t f (” I t e r a t i o n s : %d\n” , prob . i n f o [0]) ;
p r i n t f (”Primal i n f e a s i b i l i t y : %8.1 e\n” , prob . dnfo [2]) ;
p r i n t f (”Dual i n f e a s i b l i t y : %8.1e\n” , prob . dnfo [3]) ;
p r i n t f (” Re la t i v e dua l i t y gap : %8.1 e\n” , prob . dnfo [4]) ;

p r i n t f (”x = [%9.7 f %9.7 f %9.7 f]\n” , x [0] , x [1] , x [2]) ;
p r i n t f (”y = [%9.7 f]\n” , y [0]) ;
p r i n t f (” s = [%9.7 f %9.7 f %9.7 f]\n” , s [0] , s [1] , s [2]) ;

p r i n t f (”\nProblem s i z e :\n=============\n”) ;
p r i n t f (”Number o f c on s t r a i n t s : %10 l i (o r i g i n a l l y %10 l i) \n” ,

prob . i n f o [1] , prob .m) ;
p r i n t f (”Number o f v a r i a b l e s : %10 l i (o r i g i n a l l y %10 l i) \n” ,

prob . i n f o [2] , prob . n) ;

22

User Manual

p r i n t f (”Second=order cones : %10 l i \n” , prob . i n f o [5]) ;
p r i n t f (”Non=z e r o s in A: %10 l i (o r i g i n a l l y %10 l i) \n” ,

prob . i n f o [7] , prob .pA[prob . n]) ;
p r i n t f (”Non=z e r o s in M: %10 l i \n” , prob . i n f o [8]) ;
p r i n t f (”Non=z e r o s in L : %10 l i \n” , prob . i n f o [9]) ;

}

2.2 MATLAB

2.2.1 Installation

To call the Wolf Optimization solver from MATLAB, navigate to the folder con-
taining the files wolfcos.m, mex wolfcos.c, wolf.h and the library(wolfcos.dll
and wolfcos.lib on Windows, or wolfcos.a on Linux and OS X). Run the com-
mand

>> mex -largeArrayDims mex wolfcos.c -lwolfcos

to compile the driver. Note that the To add the current directory to the path
(allowing you to call wolfcos from any location), use

>> addpath(pwd)

and

>> savepath

to save it so that it is included on the path every time you open MATLAB.

2.2.2 Usage

Quick start

To get going immediately, the following are some examples of small but interesting
problems and how to solve them with wolfcos. The first is an SOCP from Sturm
[7]:

>> A=[0 0 1]; b=1; c=[1 -1 0]’; K.q=3; wolfcos(A,b,c,K);

A small difficult SOCP presented by Ben-Tal and Nemirovski [3] is

inf

{
x1|
√
(x1 − x2)

2 + 1 ≤ x1 + x2

}
.

23

Wolf Optimization User Manual

Let z1 = x1 + x2, z2 = x1 − x2 and z3 = 1. The objective function is then
1
2
(z1 + z2) = x1, and the problem becomes inf

{
1
2
(z1 + z2} |z1 ≥

√
z22 + z23 , z3 = 1

}
.

Solve this with

>> A=[0 0 1]; b=1; c=[0.5 0.5 0]’; K.q=3; wolfcos(A,b,c,K);

A simple but dual infeasible SOCP (again from Ben-Tal and Nemirovski [3])
is

>> A=[1 0 -1]; b=0; c=[0 1 0]’; K.q=3; wolfcos(A,b,c,K);

Detailed usage instructions

The MATLAB interface uses a SeDuMi-based input format, with constraint matrix
A, right hand side vector b, objective function vector c, and the cone structure K.
The fields of K are

� K.f is the number of free variables

� K.l is the number of linear variables

� K.q is a list of the size of each conic quadratic cone, so there are sum(K.q)

variables and length(K.q) second-order cones

� K.r is a list of the size of each rotated conic quadratic cone, so there are
sum(K.r) variables and length(K.r) rotated second-order cones

� K.p is a two column array, where the first column is the list of the size of each
power cone, so there are sum(K.p(:,1)) variables and length(K.p(:,1))

power cones, and the second column is the exponent α for each cone

It is also possible to pass the majority of the parameters controlling the presolve
through an options structure with

>> wolfcos(A,b,c,K,opt);

The fields of opt that may be specified are as follows:

� opt.lu pivotcoleps - the pivot column threshold for the LU factorisation
used to eliminate free variables

� opt.lu pivotroweps - the pivot row threshold for the LU factoration used
to eliminate free variables

� opt.lu absdropeps - the absolute drop tolerance used in the LU factorisa-
tion to remove very tiny entries from the constraint matrix

24

User Manual

� opt.lu searchcols - the number of columns to search for a pivot in the LU
factorisation used to eliminate free variables

� opt.lu maxfillperpivot - the maximum allowed fill-in per pivot less the
number of entries in the pivot row and column

� opt.presolve equiliter - the maximum number of iterations to use to
equilibrate the constraint matrix before solving with the IPM, or use −1 for
∞-norm row scaling or −2 for 2-norm row scaling

� opt.presolve densecolratio - any column greater than this parameter
times the average number of column entries is deemed to be dense and han-
dled differently in computing the search direction

� opt.ipm maxiter - the maximum number of IPM iterations

� opt.ipm maxstagiter - the maximum number of IPM iterations with a stag-
nating primal or dual infeasibility

� opt.ipm epsP - the primal infeasibility convergence tolerance

� opt.ipm epsD - the dual infeasibility convergence tolerance

� opt.ipm epsG - the relative duality gap convergence tolerance

� opt.ipm epsA - the significant figure convergence tolerance

� opt.ipm epsI - tolerance used to identify infeasible and ill-posed problems

� opt.ipm epsMU - tolerance used to identify ill-posed problems

� opt.ipm hoodbeta - ∞-norm neighbourhood parameter used in determining
the maximum step length

� opt.ipm predcorrdelta - the parameter used to ensure a minimum amount
of progress towards an optimal solution is attempted

� opt.ipm steprelax - step length relaxation

� opt.ipm freevarreg - used to regularise the augmented equations for free
variables

� opt.ipm maxinfeasincratio - the maximum primal or dual infeasibility
ratio increase in one iteration (unless the infeasibility is still less than the
threshold)

� opt.ipm infeasstagratio - the ratio of successive infeasibilities deemed to
be stagnating

25

Wolf Optimization User Manual

If desired, x, y and s can be returned bywolfcos, along with an info structure that
contains information on the computed solution and the solution process with

>> [x,y,s,info] = wolfcos(A,b,c,K);

The fields of info are as follows:

1. info(1) - the status returned by the solver

2. info(2) - the number of IPM iterations

3. info(3) - the primal objective value

4. info(4) - the dual objective value

5. info(5) - the relative primal infeasibility, ∥Ax− b∥∞/ (1 + ∥b∥∞)

6. info(6) - the relative dual infeasibility, ∥ATy + s− c∥∞/ (1 + ∥c∥∞)

7. info(7) - the relative duality gap, |cTx− bTy|/
(
1 + 1

2

(
|cTx|+ |bTy|

))
8. info(8) - time spent in presolve

9. info(9) - time spent in initialisation (including ordering routine)

10. info(10) - time spent in IPM

11. info(11) - time spent in postsolve

12. info(12) - total time taken to solve the problem

13. info(13) - the total number of equality constraints in the solved problem

14. info(14) - the total number of variables in the solved problem

15. info(15) - the number of free variables in the solved problem

16. info(16) - the number of linear variables in the solved problem

17. info(17) - the number of second-order cones in the solved problem

18. info(18) - the number of rotated second-order cones in the solved problem

19. info(20) - the number of power cones in the solved problem

20. info(22) - the number of non-zeros in the constraint matrix

21. info(23) - the number of non-zeros in the search direction Schur complement

22. info(24) - the number of non-zeros in the Cholesky factorization

23. info(25) - number of columns considered dense in the constraint matrix

26

User Manual

24. info(26) - Schur complement build time

25. info(27) - factorization time

26. info(28) - search direction solve time

27. info(29) - search time

28. info(30) - dense solve time

2.2.3 Help

You can also use MATLAB’s inbuilt help command with wolfcos to get the usage
information with

>> help wolfcos

27

Wolf Optimization User Manual

28

Bibliography

[1] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal–dual
interior–point method for conic quadratic optimization. Mathematical Pro-
gramming, 95(2):249–277, 2003.

[2] Knud D. Andersen. A modified Schur–complement method for handling dense
columns in interior–point methods for linear programming. ACM Transactions
on Mathematical Software, 22(3):348–356, sep 1996.

[3] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimiza-
tion. Society for Industrial and Applied Mathematics, jan 2001.

[4] Zhi Cai and Kim-Chuan Toh. Solving second order cone programming via a re-
duced augmented system approach. SIAM Journal on Optimization, 17(3):711–
737, jan 2006.

[5] Yu. E. Nesterov and M. J. Todd. Primal–dual interior–point methods for
self–scaled cones. SIAM Journal on Optimization, 8(2):324–364, may 1998.

[6] Nathan C. Podlich. The development of efficient algorithms for large–scale
finite element limit analysis. PhD thesis, University of Newcastle, 2017.

[7] Jos F. Sturm. Implementation of interior point methods for mixed semidefi-
nite and second order cone optimization problems. Optimization Methods and
Software, 17(6):1105–1154, jan 2002.

[8] Levent Tunçel. Generalization of primal–dual interior–point methods to convex
optimization problems in conic form. Foundations of Computational Mathe-
matics, 1(3):229–254, jul 2001.

29

