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Abstract 
Finite element limit analysis is a useful numerical method for stability assessment of a 

wide range of geotechnical and structural applications yielding lower and upper bound 

estimates on the ultimate loads which can be exerted on the structure. The most 

advanced formulations of numerical limit analysis are often cast as a conic optimisation 

problem, which is then solved very efficiently by specialised interior point methods. 

However, as the problems become larger, especially in three dimensions the 

computational demands in terms of both storage and time increase significantly. 

This Thesis details the development of efficient methods for the solution of linear 

systems and presolve routines within an interior point framework for conic programs. 

Therefore, these methods all aim to reduce the computational time required to solve the 

finite element limit analysis problems. The solution of a linear system comprises the 

majority of the computational requirements and is thus the primary concern of this 

Thesis. A range of preconditioners for Krylov subspace iterative solvers are considered, 

as well as more conventional direct solvers and their parallelisation. The presolve 

routines seek to reduce the size of the optimisation problem to be solved and avoid 

likely numerical difficulties. 

Preconditioners for Krylov subspace iterative solvers are the primary determinant for 

the success of an iterative solver-based approach. A range of preconditioners are 

developed for both positive-definite and symmetric indefinite linear systems in attempt 

to avoid the significant runtime and storage requirements associated with the direct 

solvers. The best performing methods are tested against state-of-the-art implementations 

using direct solvers on a set of test problems but are found to be uncompetitive in their 

runtime performance and their robustness. The focus is then switched to the 

parallelisation of a direct solver on modern hardware including massively parallel GPUs 

to reduce the computation time with significant gains achieved. 

In addition to exploiting the full power of parallel processing, the Thesis develops and 

describes presolve routines which target effective treatment of fixed and free variables. 

The fixed variables cannot be immediately substituted out of the problem because they 

are associated with other variables through a conic constraint, but may still be exploited 

by careful manipulation of the linear system. The free variables can sometimes be 
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substituted out of the problem, however, avoiding the numerical difficulties they often 

present. This is achieved without increasing the size of the linear system to be solved, 

although it may require the ability to handle dense columns. Finally, an approach for 

solving a linear system with dense columns is detailed similar to that of exploiting the 

fixed variables. 
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Notation 
Throughout this Thesis, matrices are denoted with upper-case bold symbols, while 

vectors are denoted by lower-case bold symbols. Scalar matrix or vector entries shall be 

denoted by lower-case symbols. Scalars are most often denoted by lower case characters 

from the Greek alphabet. x  and A  refer to the vector and matrix whose entries are the 

absolute value of the entries of x  and A , respectively. The inequality symbols ≤  and 

≥  are element-wise inequalities, i.e. 0≤A  indicates that all entries of A  are non-

negative. 

The equations defining the search direction within an interior point method are of the 

general form =Ax b . These symbols are used throughout to denote the components of 

a general system of linear equations. Any restrictions or limitations on the components 

of the general form are noted explicitly in the given context. 

A bracketed superscript indicates the iteration index. However, in cases where inverse 

or transposition notation is required, the iteration index will be moved to the subscript 

and remain bracketed. Furthermore, a convention of using k  for iteration indices will 

generally be adhered to, while i  and j  will normally represent row and column indices, 

respectively.  
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Chapter 1 Introduction 
One of the most crucial aspects in the design of ground-based structures is the stability 

of the supporting material, the soil. The upper and lower bound theorems of limit 

analysis [1] provide a useful methodology to address the stability of the supporting body 

[2]. A lower bound on the true collapse load can be identified by finding a stress 

distribution which satisfies the equilibrium equations and stress boundary conditions, 

and does not violate the yield criterion at any point (a statically admissible stress field). 

An upper bound to the true collapse load can be determined by equating the external 

rate of work to the internal power dissipation through an assumed velocity field, and 

ensuring that the velocity boundary conditions, and the strain and velocity compatibility 

conditions are satisfied (a kinematically admissible velocity field). Using the lower and 

upper bound theorems with suitable stress and velocity fields, one can bracket the 

collapse load as accurately as is necessary for a given problem [3]. The availability of 

such a precise measure of the error sets limit analysis apart from many other forms of 

numerical analysis and makes it a very useful tool in predicting soil stability. 

Formally, the lower bound can be stated as follows [3]: 

If a distribution of stresses, ijσ , can be found that satisfy equilibrium, balances the applied 

loads, iT , on the stress boundary, tA , and everywhere satisfies the yield condition ( ) 0ijf σ < ; 

then the body will not collapse. 

The upper bound theorem states [3]: 

If a compatible mechanism of plastic deformation, with strain rates p
ijε and strain rates p

iju , is 

assumed satisfying 0p
iu =  on the displacement boundary uA ; then the applied loads, iT  , and 

the body forces, iF , determined by equating the rate at which the external forces do work, 

T

p p
i i i i

A V

T u dA Fu dV+∫ ∫  , to the rate of internal dissipation, ( )p p p
ij ij ij

V V

D dV dVε σ ε=∫ ∫  , will be 

either higher or equal to the actual limit load. 

These theorems assume that the continuum will only be subject to small deformations 

and be composed of a perfectly plastic material obeying an associated flow rule. The 

associated flow rule requires the plastic strain rates, p
ijε , to be normal to the surface of 

the material’s yield function, denoted by ( )ijf σ  [4]. 
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As the geometry of the problem and the supporting soil being analysed becomes more 

complex, however, obtaining useful bounds on the true collapse load analytically 

becomes impossible or incredibly tedious. Fortunately, by discretising the problem 

using finite elements, realistic problems with stratified or anisotropic soils, complicated 

multi-structure geometries, and complicated loading may be analysed. This procedure is 

known as finite element limit analysis (FELA) and requires an optimisation problem to 

be solved to obtain each of the lower and upper bounds. 

1.2 Finite element limit analysis 
In the following, a brief history of FELA focussing on the work that has contributed to 

computing rigorous lower and upper bound solutions for problems in geomechanics is 

presented. The formulation of FELA problems into conic optimisation problems is then 

described before discussing the most common optimisation method being used to obtain 

solutions in the recent FELA literature. 

1.2.1 History of finite element limit analysis 
Lysmer [5] appears to be the first to apply a finite element discretisation to solve a limit 

analysis problem in soil mechanics. He obtained lower bounds on some plane problems 

by solving a linear program (LP) using the Simplex method [6]. In the formulation, 

Lysmer used three-noded linear finite elements, allowed for statically admissible stress 

discontinuities at the element interfaces, and used a linearised Mohr-Coulomb yield 

function. While it was stated that a minimum of a six-sided approximation was 

necessary, all Lysmer’s results were obtained using an iterative method in which he 

solved the problem multiple times, and each time using just three linear inequalities to 

represent the yield criterion at each node; based on the stress state in the previously 

obtained solution, the three inequalities were modified to more closely resemble the 

Mohr-Coulomb criterion, although this process was not found to be stable [5]. The 

unknown nodal stresses for each element comprise a normal stress on the element faces 

(in two dimensions) either side of each node, and an additional normal stress 

perpendicular to one of the sides at the opposite node. The shear stresses are uniquely 

determined by an affine transformation of the normal stresses. While leading to fewer 

unknowns than a more conventional formulation (with three unknown stresses at each 

node in two dimensions), the constraint matrix may contain entries that vary widely in 
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magnitude because of their dependence on the element shape [5]. Anderheggen and 

Knöpfel [7] formulated linear programs to obtain both lower and upper bound solutions 

with a linearised Mohr-Coulomb material, but the equilibrium and compatibility 

conditions are only satisfied approximately and so the bounds obtained are not true 

bounds. Pastor [8] obtained lower bounds for the vertical cut and introduced 

prolongation or extension zones, which ensure the material does not violate the yield 

criterion beyond the finite element discretisation. Bottero et al. [9] solve some plane 

strain upper and lower bounds for a linearised Mohr-Coulomb through linear 

programming and mention that they have extended the kinematic formulation to use 

quadratic triangular elements, although no details are given. Sloan formulates both 

lower [10] and upper [11] bound problems as linear programs using a linearisation of 

the Mohr-Coulomb criterion, solving them efficiently by exploiting sparsity and using 

an active set method with a steepest edge search [12] that is better suited to LPs with 

more constraints than unknowns (which is generally the case when one linearises the 

Mohr-Coulomb yield condition). Sloan and Kleeman [13] improved the upper bound 

formulation, allowing for velocity discontinuities between each element and the 

direction of shearing to be found automatically. 

In the early 1990s, a variety of solution schemes appeared in the literature capitalising 

on the advances being made in the optimisation field. Christiansen and Kortanek [14] 

solved Christiansen’s [15] earlier mixed formulation (yielding neither a true lower nor 

upper bound) much more efficiently using an interior point method (IPM) for LP. 

Similarly, Zouain et al. [16] employed an IPM for nonlinear programming and solved a 

mixed formulation, representing the yield constraints as nonlinear inequalities and thus 

obviating the need for a large number of linear inequalities. The scheme does, however, 

require a smooth approximation to any non-differentiable points in the yield criterion 

(present in the Mohr-Coulomb criterion among others) [17]. This method was extended 

by Lyamin [18] and Lyamin and Sloan [19], [20] to obtain rigorous lower and upper 

bounds in a very general implementation, citing speedups of over 50 ×  compared with 

an LP formulation and allowing three-dimensional problems to be solved. Pastor et al. 

[21] also demonstrated the superiority of the IPM scheme in solving both lower and 

upper bound vertical cut problems. Krabbenhøft et al. [22] introduced a stress-based 

upper bound formulation that provides a significantly improved method for 
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incorporating discontinuities, and showed that the formulation was typically about 2 ×  

faster than the conventional formulation given by Lyamin and Sloan [20]. 

The beginning of the third century saw finite element limit analysis (FELA) results 

published using conic inequalities to represent the yield criterion, generally for von 

Mises materials (see for example, [23], [24]). Building on these results, 

Makrodimopoulos and Martin [25], [26] presented second order cone program (SOCP) 

formulations for Drucker-Prager materials in two and three dimensions, and Mohr-

Coulomb materials in two dimensions. They then solved the SOCP using one of the 

leading commercial solvers, MOSEK [27], that uses an efficient primal-dual IPM. The 

Mohr-Coulomb criterion for three-dimensional problems may also be cast as a 

semidefinite constraint, leading to a semidefinite program (SDP) [28]–[30]. These conic 

programs can exploit the large body of theoretical and practical results concerning IPMs 

obtained by the mathematical programming community during the last three decades. 

Details of these methods are considered in greater depth below. 

The conic formulations are not the only FELA approaches being actively developed by 

researchers. An upper bound approach using an augmented Lagrangian optimisation 

scheme using MUMPS has the benefit that the matrix defining the search direction does 

not exhibit growth in the condition number as a solution is approached [31], and allows 

exploitation of parallel cluster-based systems to reduce the solve time, using domain 

decomposition to divide the work among processors [32]. 

1.2.2 Finite element limit analysis formulation 
A brief overview of the finite element formulation of limit analysis problems is covered 

below, following [10], [11], [19], [20], [22], [25], [26]. For both the upper and lower 

bound formulations we consider a soil mass of volume V  and surface area A , with 

prescribed tractions acting on the boundary tA  denoted as t , q  being the unknown 

tractions acting on qA , and the known and unknown body forces acting on V  denoted 

as g  and h , respectively. The soil material satisfies the yield function ( ) 0f ≤σ , where 

σ  represents the stresses in the soil. As the problems considered here are in both two 

and three dimensions, we denote the dimension of the problem as D , and consider the 

following subscripts to be equivalent when discussing problem formulations 
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1, 2,z 3x y≡ ≡ ≡ , corresponding to the standard rectangular Cartesian coordinate 

system. A superscript l  indicates that the component corresponds to the l th node and a 

superscript e  indicates that it corresponds to element e . 

For computing both lower and upper bounds, the continuum is discretised using finite 

elements and thus the stresses in the lower bound and the velocities in the upper bound 

formulation at any point inside each element can be computed with 

 
1

1

D
l

l
l

N
+

=

= ∑σ σ  (1.1) 

and 

 
1D

l
l

l
N

+

= ∑u u  , (1.2) 

respectively. Note that the description here considers linear elements, using the linear 

shape functions 

 
0

D

l lk k
k

N a x
=

= ∑  , (1.3) 

where lσ  are the nodal stresses, lu  are the nodal velocities, kx  are the nodal 

coordinates, and 

 ( ) 11 l k lk
lka + += −

C
C

,  

 

1 1
1
2 2
1

1 1
1

1
1

1

D

D

D D
D

x x
x x

x x+ +

 
 
 =
 
 
 

C





   



, 

C  is the determinant of C , and lkC  is the determinant of matrix obtained by 

removing the l th row and the k th column from C . Note that the index of the first 

column of C  is 0  while the index of the first row is 1  when computing the 

determinants lkC . 
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This allows the standard finite element strain-displacement matrix eB  for linear-

displacement constraint-strain elements to be represented as 

 1 1e l D+ =  B B B B  , 

where 

 

( ) ( )

( ) ( )

( ) ( )

111 111 11 11

1 1

11 11 1 1

, ,

, ,

, ,

D D

l
DD DD DDD DDD

D D D D D D

a l a l

a l a l

a l a l

δ φ δ φ

δ φ δ φ

δ φ δ φ

 
 
 
 =
 
 
  

B



 



 



, 

 
1 if  or 
0 otherwiseijk

i j i k
δ

= =
= 


 , 

and 

 
if 
if 

1 otherwise
ijk

k i j
j i kφ

=
= =


. 

This accounts for the symmetry in the stress tensor (and similarly the strain tensor) 

 
xx xy xz

yx yy yz

zx zy zz

σ σ σ
σ σ σ
σ σ σ

 
 =  
  

σ  

by only considering the upper triangular portion of the stress tensor and using the 

ordering 

 { }T

xx yy zz xy yz xzσ σ σ σ σ σ=σ   (1.4) 

for the three-dimensional stress tensor, and 

 { }xx yy xyσ σ σ=σ   (1.5) 

in two dimensions. The strain vector is analogous to this for both two and three 

dimensions. 
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In the following, some common yield criteria which can be expressed as conic 

inequalities are covered before describing the details specific to each of the lower and 

upper bound formulations. 

1.2.2.1 Common yield criteria as conic constraints 
Common yield criteria used in stability analysis include the Mohr-Coulomb and 

Drucker-Prager yield conditions. The Mohr-Coulomb criterion contains within it the 

Tresca yield criterion through an appropriate choice of variables, and, similarly, the 

Drucker-Prager (or extended von Mises) criterion is a generalised form of the von Mises 

yield condition. Both of these criteria may be formulated as conic constraints, as is 

shown next. 

1.2.2.1.1 The Mohr-Coulomb criterion 
The Mohr-Coulomb yield criterion is one of the most common yield conditions in use 

today, and includes, as a simplification through setting the friction angle equal to 0 , the 

Tresca condition. In three dimensions, the Mohr-Coulomb criterion is equivalent to 

restricting the nodal stresses to lie within a semidefinite cone [28]–[30]. The stress at a 

point is defined by 

 
11 12 13

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

 
 =  
  

σ , with ij jiσ σ= , 

and the Mohr-Coulomb yield criterion in three dimensions is of the form 

 1 3( ) (1 sin ) (1 sin ) 2 cos 0f cφ σ φ σ φ= + − − − ≤σ , (1.6) 

where 1σ  is the maximum principal stress, 3σ  is the minimum principal stress, and 

tensile stresses are assumed positive. The principal stresses ( )1 2 3, ,σ σ σ  are the 

eigenvalues of the stress tensor. It has been shown [28]–[30], [33] that (1.6) is 

equivalent to enforcing the linear matrix inequalities 

 
( ) 0k a

λ
λ

+ ≥
− − ≥

σ I 0
I σ

, 
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for 1 sin
1 sin

a φ
φ

−
=

+
, and 2 cos

1 sin
ck φ

φ
=

+
, both non-negative. Krabbenhøft et al. [29] prove the 

equivalence by noting that the eigenvalues of λ+A I are the same as the eigenvalues of 

A  plus λ  [34], which provides the inequalities 

 3

1

0
( ) 0k a
σ λ

λ σ
+ ≥
− − ≥

. 

When combined, these two relations give 1 3a kσ σ− ≤ . 

For plane strain conditions, the Mohr-Coulomb condition can instead be formulated as a 

second-order cone constraint [25], [26], [28]. Considering the reduced Mohr-Coulomb 

criterion for plane strain conditions (see, e.g., [35]) 

 2 2( ) 4 ( )sin 2 cos 0xx yy xy xx yy cσ σ σ σ σ φ φ− + + + − ≤ , 

where c  is the cohesion and φ  is the angle of internal friction, it can be rearranged to 

an equality constraint and second-order cone constraint [28] using the auxiliary 

variables, z : 

 

2 2
1 2 3

sin sin 0
1 1 0
0 0 2

2 cos
0
0

z z z

c

φ φ

φ

≥ +

= +

 
 = − 
  
 
 =  
  

z Dσ d

D

d

. 

The first equation is represented with the conic inequality 0≥z  . Thus, in plane-strain, 

the Mohr-Coulomb yield condition may be represented as a second-order cone 

inequality suitable for use in a second order cone program (SOCP). 

1.2.2.1.2 Drucker-Prager yield criterion 
Drucker and Prager present their yield criterion as “a proper generalization of the Mohr-

Coulomb hypothesis” [2], although (1.6) is considered to be the true generalisation of 

the Mohr-Coulomb criterion from two to three dimensions [3]. The Drucker-Prager 
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yield criterion is a right circular cone (or cylinder) [2]. Because of this, the Drucker-

Prager and von Mises yield criteria can be cast as second-order cone constraints. Thus, 

the lower and upper bound theorems can be applied to materials governed by these 

conditions to formulate a second-order cone program (also known as a conic quadratic 

program) [25], [26]. The yield criterion is defined as 

 1 2J J kα + ≤ , (1.7) 

where α  and k  are non-negative material constants, 1 1 2 3 11 22 33J σ σ σ σ σ σ= + + = + +  

and ( ) ( ) ( )2 2 2 2 2 2
2 11 22 22 33 33 11 12 23 13

1 1
2 6ij ijJ s s σ σ σ σ σ σ σ σ σ = = − + − + − + + +  . In the 

definition of 2J , 1

3ij ij ij
Js σ δ= −  where ijδ  is the Kronecker delta, 

1 if 
0 otherwiseij

i j
δ

=
= 


. 

Under a linear transformation, this is equivalent to the second order cone 

 1 1
3 2
Jk α− ≥ s . 

For equality with the Mohr-Coulomb criterion in plane strain analyses, 
21 12

kc
α

=
−

 

and 
2

3sin
1 3

αφ
α

=
−

 [2]. In three dimensions, one can choose the Lode angle θ  for 

which the Drucker-Prager condition should equal the Mohr-Coulomb. Writing the 

Mohr-Coulomb criterion in the form 

 21
2sin cos sin sin ccos 0

3 3
JJ Jφ θ φ θ φ+ − − = , 

then 

 
sin
1cos sin sin
3

φα
θ φ θ

=
−

 (1.8) 

and 

 
cos
1cos sin sin
3

ck φ

θ φ θ
=

−
. (1.9) 
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1.2.2.2 Lower bound formulation 
The lower bound formulation seeks a statically admissible stress field σ  in equilibrium 

throughout the soil mass and everywhere satisfying the yield criterion while maximising 

the load 

 d d
qA V

Q A V= +∫ ∫q h , 

where q  are a set of unknown surface tractions acting on qA  and h  are unknown body 

forces acting on the volume V . The domain is discretised using linear finite elements, 

in which each node l  of element e  is associated with the unknown vector lσ  (for two-

dimensional problems { }, ,
Tl l l l

xx yy xyσ σ σ=σ , while in three-dimensional problems 

{ }, , , , ,l l l l l l l
xx yy zz xy yz xzσ σ σ σ σ σ=σ ). The statically admissible stress field must satisfy 

equilibrium in the continuum, the discontinuities between each element face (side of a 

triangle in two dimensions or a triangular face of a tetrahedron in three dimensions), and 

along the domain boundaries. Continuum and boundary equilibrium is described by the 

equations 

 
1

+q  for 1,...,
D

ij
i i i i

j j

g h t i D
x
σ

=

∂
+ + = =

∂∑ , (1.10) 

with ig  being the fixed body forces and it  the fixed surface tractions ( ih  and iq  are 

components of q  and h  above). Obviously, elements adjacent to the domain boundary 

may have surface tractions associated with them, while the interior elements will not. 

The above also assumes the surface traction components are in the Cartesian coordinate 

system. Considering the symmetry of the stress tensor (  for ij ji i jσ σ= ≠ ), and using 

the linear shape functions describing the stress variation over the element, the 

continuum equilibrium constraint (1.10) can be formulated for each element as 

 0
e e e eα= +B σ p p , (1.11) 

where eB  is as described above, { }1 2 3 Te =σ σ σ σ  with lσ  as in (1.4) and (1.5), 

( )0
e e e= −p t g  are the prescribed surface tractions and body forces, and ( )e e e= −p q h  

represents the surface tractions and body forces to be optimised with the scalar α . 
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Figure 1. Stress discontinuity between two elements. 

Statically admissible stress discontinuities are permitted at all inter-element interfaces. 

Across these discontinuities, the normal stress perpendicular to the interface and the 

shear stress must be continuous, but the tangential normal stress may jump between the 

elements. This constraint may be expressed by separating the mesh elements by 

discontinuity elements as shown in Figure 1. The equilibrium expression for the two 

triangular elements A  and B  forming a discontinuity patch can be expressed as 

 0

0

AA A A

BB B Bα
     

= +      
      

pB 0 σ p
p0 B σ p

. 

As the width of the discontinuity patch goes to zero, this ensures equality of the normal 

and shear stress across the discontinuity while allowing the tangential stress to jump. 

This simple approach permits statically admissible stress discontinuities by using the 

same constraint equalities on the patch elements as the regular elements of the mesh, 

 0
T α= +B σ p p . (1.12) 

All points throughout the continuum must have a state of stress which lies inside or on 

the yield surface of the material. As the stress varies linearly throughout the elements, 

the yield condition will be satisfied throughout if it is satisfied at the nodes. Thus, for 

each node in the mesh, an inequality constraint of the form 

 ( ) 0lf ≤σ   

will complete the requirements for a statically admissible stress field. This leads to the 

lower bound optimisation problem 
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 0

maximise 
subject to 

                ( ) 0 1,2,...,

T

l
nf l n

α

α= +

≤ ∀ =

B σ p p
σ 

, (1.13) 

where nn  is the number of nodes in the mesh. 

1.2.2.3 Upper bound formulation 
The upper bound formulation described here follows Krabbenhøft et al. [22]. The weak 

form of the equilibrium equations (1.10) is 

 ( ) ( )
t q

T T T T

V V A A

dV dV dA
+

+ + − + =∫ ∫ ∫u L σ u g h u t q 0   , 

where L  is the matrix of differential operators 

 

0 0 0

0 0 0

0 0 0

T

x y z

y x z

z y x

 ∂ ∂ ∂
 ∂ ∂ ∂ 

∂ ∂ ∂ =  ∂ ∂ ∂ 
∂ ∂ ∂ 

 ∂ ∂ ∂ 

L  

for three-dimensional problems, simplifying to 

 
0

0

T x y

y x

∂ ∂ 
 ∂ ∂
 =

∂ ∂ 
 ∂ ∂ 

L  

in two dimensions. Note that this exploits the symmetry of the stress tensor. Using 

numerical integration with the shape functions (1.2) describing the velocities across 

each element, the following matrix expression for equilibrium is obtained for each 

element 

 ( ) 0

Te e e eα= +B σ p p , (1.14) 

where eB  is described above, { }e e e e
x y xyσ σ τ=σ  for plane-strain problems and 

{ }e e e e e e e
xx yy zz xy yz xzσ σ σ τ τ τ=σ  for problems in three dimensions, ( )0

e e e= −p t g  
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are the prescribed surface tractions and body forces, and ( )e e e= −p q h  represents the 

surface tractions and body forces to be optimised with the scalar α . Note that the 

transpose of eB  is used and that the stress is constant across the element; this should not 

be confused with the linearly varying stress in the lower bound formulation. As with the 

lower bound formulation, only the elements on the boundary of the domain can be 

associated with surface tractions, and those tractions are assumed to be prescribed in the 

same coordinate system as the unknown stresses and body forces. 

The weak form of equilibrium may also be applied to the element interfaces allowing 

for velocity discontinuities [22]. The normal stress components tangential to the 

element interface are allowed to differ on either side of each discontinuity. The normal 

stress component that is perpendicular to the interface and the shear stresses acting on 

the plane must, however, be continuous. The discontinuity is modelled as a thin “patch” 

of elements (two triangles in two dimensions and three tetrahedral elements in three), 

with the vertices of each patch element corresponding to those of the adjacent elements 

in a way identical to that in the lower bound method described previously. 

By following the same approach as in the lower bound formulation to obtain the 

perpendicular normal stress, the equality constraints for a two-element mesh with a 

discontinuity at their interface are 

 
( )

( )

TA A A A
T

B B BTB
α

         + =             

B 0 σ ρ p
S

σ ρ p0 B
. 

Here, ,A BS  again contains standard stress transformation matrices which convert the 

elemental stresses from the normal-tangent coordinate system for the discontinuity 

between elements A  and B  back to the Cartesian system. Note that the matrix S  

represented here is different to the one in the lower bound formulation, as the stress is 

constant in the upper bound formulation but varies linearly across the elements in the 

lower bound formulation. { }2
TA A A

n
L σ τ=ρ  ( L  is the length of the interface) contains 

the shear stress and perpendicular normal stress in the patch element adjacent to the first 

element for the discontinuity with the second element. The vector ,B Aρ  is defined 
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similarly (note that it is the tangential stress component, tσ , that is allowed to jump 

across the discontinuity and so does not appear in 1 2,e eρ ). 

Again, the additional variables 1 2,e eρ  may be substituted out of the problem, leaving the 

general form of the equality constraints as 

 0
T α= +B σ p p . (1.15) 

To complete the problem formulation, the yield condition must not be violated 

anywhere. Since the element stresses are constant, this leads to inequality constraints of 

the form 

 ( ) 0ef ≤σ   (1.16) 

for each element, including discontinuity elements. 

Combining the equilibrium constraints with the yield inequalities leads to the upper 

bound optimisation problem 

 0

maximise 
subject to 

                ( ) 0 1,2,...,

T

e
ef e n

α

α= +

≤ ∀ =

B σ p p
σ 

, (1.17) 

where en  is the total number of elements. Equation (1.17) represents the dual of the 

conventional upper bound formulation that minimises the power dissipation subject to 

flow rule and compatibility constraints to ensure a kinematically admissible failure 

mechanism. This dual, or stress-based, upper bound formulation provides a more 

convenient problem that can be solved approximately twice as fast as the conventional 

formulation while still providing a rigorous upper bound on the true collapse load [22]. 

1.2.3 The FELA optimisation problem 
As seen in the preceding sections, finite element limit analysis leads to the formulation 

of an optimisation problem of the form [28] 

 0

maximise 
subject to 
                ( ) 0 1,2,...,i ff i n

α
α= +

≤ ∀ =
Aσ p p
σ 

, (1.18) 



15 

 

where A is the matrix of equality constraints, σ  are the stresses, p  and 0p  are force 

vectors, α  is the load multiplier, f  represents the yield functions, ≤  is some type of 

conic inequality, and fn  is the number of points that the yield criterion must be 

satisfied at. This can be cast into the canonical form for conic programs as 

 
minimise 
subject to 
                0 1,2,...,

i

T

i ki n
=

≥ ∀ =

c x
Ax b
x 

 

where kn∈x  , c  is the objective function, kn  is the number of cones, and 
i

≥  

represents a general partial ordering over the cones i . Common (and useful) cones 

include the nonnegative orthant n
+

  (corresponding to the common partial ordering over 

the real numbers, i.e. ≥ ), the Lorentz, quadratic, or second order cone (given a vector 

n∈x  , 1 2
1

0
i

n
n ii

x x−

=
≥ ≡ ≥ ∑x  ), and the cone of semidefinite matrices (given a 

symmetric matrix T n n×= ∈A A  , 0 0
i

T≥ ≡ ≥A x Ax ). These are known as linear 

programs (LPs), second order cone programs (SOCPs), and semidefinite programs 

(SDPs). Formulations involving variables with constraints from more than one of these 

cones are generally referred to as mixed cone linear programs or semidefinite, quadratic 

and linear programs (or SQLP) [36]. 

Although the solution to these optimisation problems has been obtained using various 

methods including the Simplex method [5], active set methods [12], augmented 

Lagrangian methods [31], and various nonlinear programming schemes, FELA 

solutions are most commonly obtained today using an interior point method (IPM). A 

brief overview of these approaches is provided below. 

1.3 Interior point methods for conic programming 

1.3.1 Background 
Since the middle of the last century, linear programming has been a powerful 

framework for solving optimisation problems in the standard form 
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minimise 
subject to 
                

T

=
≥

c x
Ax b
x 0

. (1.19) 

or solving the dual problem 

 
maximise 
subject to 

T

T ≤

b y
A y c

  

which is usually modified by the addition of the slack variables, s , to convert the 

inequality constraints to equality constraints. This modified form of the dual problem 

then becomes 

 

maximise 
subject to 
                

T

T + =
≥

b y
A y s c
s 0

. (1.20) 

Solution of these problems relied heavily on the introduction of the Simplex method by 

Dantzig [6] (although von Neumann is believed to have encountered it in his study of 

zero-sum two-person games [37]), and most advances in mathematical programming are 

still initially developed in linear programming. The Simplex algorithm was found, in 

practice, to solve most linear problems efficiently by moving from vertex to vertex on 

the boundary of the feasible region based on some heuristic or rule, demonstrating the 

combinatorial nature of even continuous problems. Development of the digital computer 

enabled larger and more complex problems to be solved that were often intractable only 

a few years earlier. With a growing demand for efficient algorithms to be used on these 

digital computers, there was a significant increase in research on algorithm complexity 

during the 1960s and 1970s. The Simplex algorithm was proven to have a worst-case 

iteration complexity which is exponential in the size of the problem, and that examples 

exist that force the algorithm to visit a large majority, if not all, of the feasible 

boundary’s vertices [38]. Note that this did not reflect practitioner’s experience on many 

real-world problems, and the Simplex method has been shown, in a probabilistic sense 

(or the expected performance), to be strongly polynomial [39]. The exponential 

complexity was, nevertheless, a disturbing feature of the method. This led researchers to 

seek out some provably polynomial method (or otherwise prove it does not exist). 
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In 1979, Khachiyan [44] showed that, by progressively reducing the size of an ellipsoid 

containing the optimal solution until the desired accuracy was achieved, a linear 

program could be solved polynomially in 2( )O n  iterations, where n  is the number of 

unknowns. Despite the much improved worst-case complexity, the Simplex method was 

still far superior in practice [43]. Even so, the confirmation that a polynomially-bounded 

algorithm existed brought renewed attention to the field, and in 1984, Karmarkar [45] 

published the landmark paper describing what is now categorised as a primal projective 

potential reduction interior point method. This was followed by the recognition that the 

origins of Karmarkar’s algorithm could be seen in the logarithmic barrier method for 

nonlinear optimisation [46] (indeed, it has since been proven that the basic logarithmic 

barrier method for linear programming has polynomial complexity [47]). Shortly 

thereafter, Renegar [48] published a primal method tracing the analytic centres of the 

successively smaller subsets of the feasible set using Newton’s method. This procedure 

was a precursor to the development of the central path for linear programming, although 

the concept of the central path first appeared in the context of nonlinear 

complementarity problems in 1980 [49], and is now almost universally used in IPM 

implementations. 

For linear programming, interior point methods have almost wholly supplanted the 

simplex and active-set linear programming algorithms, based not only on their better 

theoretical complexity, but also on their practical performance [40] (although, the 

warm-start ability of the Simplex method means it is still in use in cases where 

additional problems with slightly different constraints need to be solved). Through the 

use of their self-concordant theory, Nesterov and Nemirovskii [41] extended the 

polynomial complexity results to include any case where the a self-concordant barrier 

could be identified. The main class of problems are known as conic programs, and 

include linear programs (LP), second-order cone programs (SOCP) (which subsumes 

quadratic programming, or QP), and semidefinite programs (SDP). An SOCP can be 

cast as an SDP (and an LP cast as either an SOCP or SDP), but an SDP has more 

expressive power than an SOCP, meaning that some SDPs cannot be cast as an LP or 

SOCP. Furthermore, the iteration bounds on the three conic programs increase from LP 

to SOCP to SDP, providing incentive to work with the formulation that is most efficient 

to solve. The primal conic program is (as described above) 



18 

 

 
minimise 
subject to 
                0 1,2,...,

i

T

i ki n
=

≥ ∀ =

c x
Ax b
x 

 (1.21) 

while the dual conic program is 

 

*

maximise 
subject to 
                0 1,2,...,

i

T

T

i ki n
+ =

≥ ∀ =

b y
A y s c
s



, (1.22) 

where the dual Lorentz cones are { }* 0,T= ≥ ∀ ∈s s x x  . 

Self-concordance is essentially a pair of differential inequalities concerning the first, 

second, and third directional derivatives of a three-times continuously differentiable 

convex barrier [42]. Alternatively, Peng et al. [43] have shown that by using a self-

regular barrier (requiring a two-times continuously differentiable function, with two 

specific inequality conditions), the convergence complexity of the long-step path 

following scheme, which is known to be superior to the short-step method in practice, 

can get arbitrarily close to the theoretical short-step iteration bound. It is these 

conditions on the smoothness of the barrier that ensures the Newton method can identify 

points very close to the optimal point of each sub-problem (that is, points lying on the 

central path), usually in only one or very few iterations.  

Interior point methods are usually either a potential reduction method or a path-

following method, and can act on the primal or dual problem. In both theory and 

practice, work is almost entirely focussed on primal-dual methods [50]–[53], which 

utilise information from both the primal and the dual problem as an optimal solution is 

approached. The potential reduction methods use some measure to evaluate the quality 

of points in the feasible set along the search direction, while preventing the unknowns 

from prematurely reaching the boundary of the feasible set. Thus, these methods do not 

explicitly follow the central path. The path-following methods approximately trace out 

what is known as the central path by staying within some neighbourhood of it. The 

path-following approaches can be further split between short-step and long-step 

methods, with long-step methods being the superior approach in practice, despite the 

fact that short-step methods have long had better theoretical iteration bounds, although 
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long-step methods with self-regular barriers have been proven to have arbitrarily close 

iteration complexity to their short-step counterparts [43]. These algorithms include the 

infeasible path-following methods, which allow some infeasibility in the constraints, but 

ensure that feasibility is approached, usually as fast as or faster than the optimal solution 

convergence. Another widely-appreciated development for path-following methods was 

that of Mehrotra’s predictor-corrector method, as well as a number of other small but 

effective implementation details [54]. Mehrotra’s method uses the same factorisation 

first as an affine-scaling step, which effectively considers steps parallel to the central 

path, and then a combined centering and quadratic corrector step, which combines a 

direction towards the central path as well as towards the solution, adaptively selecting a 

suitable weighting between the centering direction and a direction approaching the 

solution. Mehrotra’s predictor-corrector approach has been extended to include 

information from higher-order terms of the Taylor expansion that the direction is based 

on. The most notable of these is Gondzio’s [55] multiple centrality correctors for LP 

(and later extended to SQLP [56]), which seek to increase the step length able to be 

taken in the found search direction rather than trying to follow the central path more 

closely. 

Most of the common state-of-the-art implementations today embed the problem in a 

homogeneous self-dual (HSD) model (see, for example, [27], [36], [57]–[59]). This 

reformulated problem is a linear complementarity problem (LCP), where a standard 

LCP seeks an ( ) 2, n∈x y   such that 

 , , , 0 1,2,...,i ix y i n= + ≥ ≥ = ∀ =y Mx q x 0 y 0 , (1.23) 

n n×∈M  , n∈q  , and M  is usually restricted to be a 0P  matrix [60]. The class of 0P  

matrices includes skew-symmetric, positive semidefinite, and positive definite matrices, 

among others. These problems have been extensively studied by a Japanese group led 

by Kojima [60], and may be solved efficiently by IPMs (Kojima et al. describe a unified 

interior point framework using both potential reduction and path-following concepts 

[60]). The original embedding of an LP into an LCP by Ye et al. [61] was later 

simplified into what is known as the simplified HSD formulation [62]. These were 

extended from LP to handle conic programs, leading to the standard form for SOCP to 

find a strictly complementary point satisfying 
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( ) ( )

*

0mat mat
0

, , 0, 0
i i

T T

T

i i

τκ

τ κ

τ κ

=

=

 −    
    − =    
    −     

≥ ≥ ≥ ≥

x s e 0

0 c b
c 0 A x s
b A 0 y 0

x 0 s 0 

, (1.24) 

where 

0
i

i T
i

x 
=  

 
x

x
, 

0

0
mat( ) i

T
i

i
i i

x

x

 
=  

  

x
x

x I
, 

( ) ( ) ( )( )
( )

( )

mat
mat diag mat ,...,mat

mat
k

k

i

i n

n

 
 

= =  
 
  

x
x x x

x

 , 

1

0

kn

 
 =  
 
 

e
e

e
 , 

1
0

0

ini

 
  = ∈ 
 
  

e 



, 

and in  is size of the i th cone 

The coefficient matrix in (1.24) is clearly skew-symmetric and the slacks s  and κ  

convert the homogeneous system with inequalities to this system of equalities. The 

solution to the reformulated problem provides a solution to the original or it indicates 

that the original problem is infeasible. The HSD and simplified HSD forms ensure that 

the problem being solved will always have a solution, even if the original problem does 

not. Note that the simplified HSD formulation does not have any strictly feasible points, 

but the HSD formulation does [62]. 

Generally, the path-following IPMs considered in this Thesis proceed in a similar 

fashion to the simplified steps shown below. This primal-dual framework incorporates 

the simplified HSD formulation with Mehrotra’s predictor-corrector search direction. 
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( ) ( )

( )

0 0 0 0 0, , , , , , , ,

Do until converged to tolerance 

    Determine affine-scaling search direction, ,d , , ,d

    Determine step size, 

    Determine corrector search directi

aff aff aff aff aff
x y s

aff

τ κ

τ κ τ κ

ε

α

=x y s x y s

d d d

( )

( ) ( ) ( )

on, ,d , , ,d

    Determine  for combined search direction

    Update , , , , , , , , ,d , , ,d

End

cor cor cor cor cor
x y s

x y s

τ κ

τ κ

α

τ κ τ κ α= +

d d d

x y s x y s d d d

 

Here, x  are the primal unknowns, s  the dual unknowns, 0ε ≥  is the convergence 

tolerance of the IPM scheme, and α  is the step size variable damping factor controlling 

the length of the step taken in the Newton direction to improve convergence when far 

from the solution. The scheme outlined here assumes a primal-dual starting point that 

lies within the neighbourhood of the central path (that is, ( )0 0 0, , µ τΦ ≤x s ). The search 

direction, ( ), , , ,x y sd dτ κd d d , is computed by solving a system of linear equations of the 

form 

 

1

2

3

4

5

1

x
T

T T
y

s

d
r

rd

τ

κκ τ

−    
   −        =− −     

     
     
          

rdA b
rc A I

dc b
rdS X 

, (1.25) 

where X  and S  are matrices based on the previous iterates x  and s  (described below), 

and the right-hand-side depends on the residuals in the problem constraints (the 

“infeasibility”), some parameters, and whether the predictor or a corrector direction is 

being computed. For feasible path-following and potential reductions methods, the 

starting point must be feasible (that is, the points must satisfy =Ax b  and T + =A y s c ). 

In development of an approach to solve FELA optimisation problems, it is crucial to be 

as efficient as possible at solving both SOCPs and SDPs because of the common 

material idealisations utilised in analyses. Thus, an ideal optimisation scheme must be 

effective for both formulations or else each formulation must be addressed individually. 
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1.3.2 The search direction in interior point methods 
The Newton method for unconstrained optimisation approximates the objective function 

f  by a second order Taylor expansion 

 ' ''1( ) ( ) ( ) ( ) ( ) ( )( )
2

T Tf f f f= + − + − −y x y x x y x x y x . 

Using the solution to this approximation, a solution estimate to the original problem is 

obtained. Close to the solution, Newton’s method exhibits quadratic convergence 

behaviour. Unfortunately, away from the solution the behaviour can be somewhat 

erratic and so it is usually damped through the use of a damping parameter, α , 

determined by a line search to minimise the objective along the computed search 

direction. This ensures the desired convergence behaviour as we approach the solution 

while avoiding the undesirable behaviour early in the search process. 

The Karush-Kuhn-Tucker (KKT) conditions specify the necessary and sufficient 

conditions for an optimal point in the optimisation problem. The Newton search 

direction required in the interior point algorithm is the solution obtained from the 

perturbed Newton system obtained from the Karush-Kuhn-Tucker equations. The 

Newton system for an SOCP is obtained by applying Newton’s method to the mildly 

nonlinear KKT system 

 
mat( )mat( )

T

=

+ =
=

Ax b
A y s c

x s 0
 (1.26) 

or to (1.24) for simplified HSD formulation. Applying Newton’s method to (1.26) and 

perturbing the system in the third equation by 0µe  gives 

 

( ) ( )

( )
( )

( )0mat mat mat

x
T T

y

s µ

 − −   
    = − + −    

     −    

Ax bA 0 0 d
0 A I d A y s c

x 0 s d e x s

. (1.27) 

This is the linearised Newton direction for an SOCP. This system has a unique solution 

if and only if ( ) ( )1mat mat T−A s x A  is non-singular [43]. Even for strictly feasible 

primal-dual pairs, this is not necessarily true, and, therefore, the Newton search 

direction is not well-defined for an SOCP or SDP in general [43]. This is addressed by 
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scaling, where the pair ( ),x s  is scaled to ( )1, −Fx F s  where F  is a scaling matrix. This 

scaling is also performed in IPM implementations for LP. There are numerous different 

scaling schemes that have been published (for a discussion on scaling for semidefinite 

programming, refer to [63]). Common scaling schemes in the literature lead to the AHO 

direction [64], the primal or dual HKM direction [65], and the NT direction [66], [67]. 

The AHO direction assumes an identity scaling (resulting in the AHO search direction 

being the solution of (1.27), i.e. =F I ). The primal HKM direction is obtained by 

setting =Fx e  (where e  is the vector of 1’s), while the dual HKM direction sets 
1− =F s e . By setting 1−=Fx F s , the NT direction is obtained. Interestingly, by 

considering which scaling leads to the optimal approximate solution in the sense of 

minimising the duality gap plus the barrier function applied to the primal and dual 

solution approximations, it is found that the NT scaling is optimal. Furthermore, 

Tsuchiya [68], [69] has shown that the NT direction has a lower theoretical iteration 

bound than other scaling approaches in long-step path-following methods. It is also the 

scaling used in popular SOCP packages (see, for example, [57], [70]). 

Defining the scaling matrix F  such that it satisfies 1−= =Fx F s v , the scalar 

1

T

kn
τκµ +

=
+

x s , and parameterising the central path with γ , applying the NT scaling 

leads to the scaled and perturbed Newton search direction for the simplified HSD 

formulation allowing for infeasible iterates is given by 

 

( ) ( )

1

2

3
1 1

4

5

1

mat mat

x
T

T T
y

s

d
r

rd

τ

κκ τ

− −

−    
    −       − −  =                      

A b rd
c A I r

c b d
F s F Fx F rd

, (1.28) 

where 
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( ) ( )
( ) ( )
( ) ( )

( ) ( )

1

2

3

14

5

1

1

1

mat mat

T

T Tr

r

γ τ

γ τ

γ κ

γµ

γµ τκ

−

− − 
   
  − + − 
     = − − −   
   

−   
     − 

Ax br
A y s cr
b y c x

r e Fx F s e

. (1.29) 

Note that the infeasibility of the solution approximations may be zero for algorithms 

that maintain feasibility for all iterations, but this will not be considered further as this 

generally requires identifying an initial point which is both primal and dual feasible. 

Infeasible iterates are generally allowed in IPM implementations which simplifies 

issues surrounding initial points and rounding errors (which can introduce infeasibility, 

even for well-conditioned coefficient matrices), and the IPM can progress towards 

optimality whilst simultaneously reducing the infeasibility in the approximation. 

Mehrotra’s predictor-corrector method provides a worthwhile reduction in the number 

of iterations needed by the IPM to reach a solution by first computing a pure Newton 

search direction (also referred to as a predictor or affine-scaling direction), achieved by 

solving (1.28) with 0γ = , and then taking a corrector step. The corrector step addresses 

the fact that the Newton direction ignores the quadratic term ( ) ( )mat matx sd d  in 

linearising the third equation in (1.26). By approximating this term after computing the 

predictor direction by ( ) ( )mat matp p
x sd d  (the superscript p  indicating that they are 

components of the predictor direction defined as the solution to (1.28) with 0γ = ), the 

corrector direction is defined as the solution to the system with the same coefficient 

matrix as in (1.28) but the right hand side 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )1 1

1

1

1

mat mat mat mat

T

T T

p p
x s

p pd dτ κ

γ τ

γ τ

γ κ

γµ

γµ τκ

− −

− − 
 

− + − 
 

− − − 
 

− − 
 − − 

Ax b

A y s c

b y c x

e Fx F s e Fd F d e

. (1.30) 

The system of equations defined by (1.28) can be reduced to a 3 3×  system through 

elimination of 
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 ( )5
1d r dκ τκ
τ

= −   (1.31) 

and 

 ( ) ( )( )1 1
4mat mats x

− −= −d F Fx r F s Fd ,  (1.32) 

giving 

 
( ) 1

2 4

1

5
3

matT
x

y

T T d rrτκ
τ τ

−
  
  − − 
    − =    

        − +    

0 A c d r F Fx r
A 0 b d r

c b

.  (1.33) 

Further elimination of xd  and yd  from the last equation gives the expression for dτ  

 ( )
1 1 12 2

5 2 4
3

1

mat
T TT Trd rτ

κ
τ τ

− − −   − −   − −      −  + = + −                        

c c cF A F A r F Fx r
b b bA 0 A 0 r

.

 (1.34) 

Computing the vectors 1

2

 
 
 

g
g

 and 1

2

 
 
 

h
h

 such that they satisfy 

 
2

1

2

T −    
=    

   

g cF A
g bA 0

  (1.35) 

and 

 ( ) 12
1 2 4

2 1

matT −  −   − =    
      

hF A r F Fx r
hA 0 r

,  (1.36) 

respectively, allows dτ  to be computed as 

 
5

3 1 2

1 2

T T

T T

rr
dτ

τ
κ
τ

+ + −
=

− +

c h b h

c g b g
. (1.37) 

These components can be combined to give 
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 1 1

2 2

x

y
dτ

     
= +     

    

d h g
d h g

.  (1.38) 

Finally, dκ  and sd  can be computed from (1.31) and (1.32), respectively. As has been 

shown, the bulk of the computational effort in obtaining the search direction is in 

solving systems with the 2 2×  block matrix in (1.35) and (1.36). Using a direct method 

allows the additional solve to be computed at a significantly lower cost than that of 

factorising the matrix, and this same factorisation may also be used for the corrector 

direction components. This system is known as the augmented or KKT system. Systems 

with a block structure like this are also known as saddle point systems and they arise in 

many applications [71]. Note that it is symmetric but indefinite and, in practice, this 

KKT matrix is usually reduced further, allowing (1.35) to be solved in two steps as 

 2 2
2

T− −= +AF A g b AF c  (1.39) 

and then 

 ( )2
1 2

T−= − −g F c A g .  (1.40) 

Note that equation (1.36) can clearly be reduced and solved in the same way. The 

system 2 T−AF A  is symmetric positive definite (SPD), and is usually solved using 

Cholesky decomposition. In practice (that is, in finite precision on a modern computer), 

(1.39) is sometimes symmetric positive semidefinite (or even symmetric indefinite) due 

to ill-conditioning in 2F . When the matrix becomes semidefinite or indefinite, the 

system gets more difficult to factorise, as the diagonal entries are no longer guaranteed 

to be stable pivots [72]. While most implementations, especially for SOCP, use a direct 

solver to compute the search direction, in the early iterations of the IPM for LP and 

SDP, this system can generally be solved using the preconditioned conjugate gradient 

method (often coupled with an incomplete Cholesky decomposition as a 

preconditioner), but, because of severe increase in the condition number of the 

coefficient matrix, it becomes much more difficult to solve with the iterative methods as 

the IPM approaches a solution. Note that the corresponding systems defining the search 

directions for SDP are defined in similar way, making allowances for the unknowns 

now being matrices instead of vectors and adjusting the algebra used to define the 

complementarity condition. 



27 

 

If the time to solve each system is not effectively negligible compared with the 

factorisation, then it may be advantageous to solve for the g  and h  variables 

simultaneously as 

 [ ] ( ) 12 2 2 1
2 2 1 2 4matT −− − − − = + − + AF A g h b AF c r AF r AF Fx r . (1.41) 

By solving for the two variables at once allows more arithmetic operations per load for 

the components in the coefficient matrix factorisation (or the coefficient matrix and any 

preconditioner in the situation of a preconditioned iterative solver). It also provides 

more scope for exploiting the vector-capable hardware in most modern desktop 

machines. 

1.3.3 Handling free variables 
In addition to the conically constrained variables discussed so far, there are those scalar 

variables which are not constrained, i.e. fx ∈ . These are known as free variables and 

are denoted by a subscript f . The handling of free variables in solving the optimisation 

problem can play a significant part in the stability and runtime performance of the 

approach used [73]. The standard form of the problem considered in this section is then 

 

minimise 

subject to 

                0 1,2,...,
i

T T
f

f
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+ =
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and the dual 
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A y s c
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. 

There are a few different approaches to dealing with free variables in IPMs: 

1. Solving the resulting indefinite Newton search direction equation directly. The 

coefficient matrix in the augmented system in this case becomes 
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2 T

T

 −
 
 
  

F 0 A
0 0 E
A E 0

, thus the (1,1)  block (shown here as 2 2× ) is singular and so 

any scheme which relies on the non-singularity of this block cannot be used. 

This excludes reducing the augmented system to symmetric positive definite 

form, instead arriving at the indefinite coefficient system 
2 T T− 

 
 

AF A E
E 0

. 

2. Eliminating the free variables from the problem by finding a suitable basis in E  

and converting the problem [74]. If we join A  and E  as [ ]A E , and permute 

the constraint matrix and the vectors b  and y  such that we have the partitions 

B B

N N

 
 
 

A E
A E

, B

N

 
 
 

b
b

, and B

N

 
 
 

y
y

, where BE  is a suitable (full rank) basis of E  

and all other partitions are permuted accordingly. The free variables can then be 

eliminated from the problem and the constraint matrix becomes 
1

N N B B
−= −A A E E A , the primal and dual objective functions become 

( )1 1T T T
B B B B
− −+ −f E b c f E A x  and ( )1T T T T T

B B N B B N N
− −+ −b E f b b E E y , respectively, and 

the primal and dual systems of equality constraints become 1
N N B B

−= −Ax b E E b  

and T T T
N B B

−+ − + =A y s c A E f 0 . The sparsity of the constraint matrix, and more 

importantly the Schur complement matrix 
2 2 1 2T T T T T

N N N B B B B N
− − − − −= +AF A A F A E E A F A E E , may be affected severely. Some 

solver packages will consider eliminating the free variables in a presolve phase 

and eliminate any of them (not necessarily all of them) if the benefits of the 

reduced problem size outweigh the cost of a more dense constraint matrix (see, 

for example, [75]). 

3. By using a “slack” variable to convert each free variable into two linear 

variables. The original free variable is then the difference between two linear 

variables and so f p nx x x= − , where px  and nx  are known as the positive and 

negative parts, respectively, of fx . This approach often leads to numerical 

issues related to variable growth. This is a direct consequence of the 
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unboundedness of the new variables, that is px  and nx  can be arbitrarily large 

for any fx , even if fx  is tiny or zero. This is known to cause numerical 

difficulties as it leaves the solution set unbounded (that is, both px  and nx  can 

be arbitrarily large but still represent the same value for fx ) [76]. 

4. Perturbing, or regularising, the augmented equations so that the components of 

the (1,1)  block corresponding to the free variables have a small but non-zero 

value, leading to the augmented system 

2 T

Tδ
 −
 − 
  

F 0 A
0 I E
A E 0

. This allows the 

system to be reduced into the SPD form 2 1T Tδ− −+AF A EE and solved by a 

Cholesky solver. This has the obvious downside that the direction is no longer a 

true Newton direction but instead an inexact Newton direction (even when 

solved exactly), and, depending on the value of δ , this can often impact on 

numerical performance. The perturbation value has conventionally been fixed, 

although adaptive approaches have been developed that consider global 

convergence theory with positive results on SDPs and SQLPs [77]. 

Unfortunately, the bound on ( )kδ  guaranteeing global convergence may 

necessitate refactorisation and recomputing the search direction if the ( )kδ  is too 

large (possibly more than once) [77]. 

5. By embedding the free variables in a second-order cone (Andersen, 2002, cited 

in [77]). This approach imposes a second-order cone constraint on the free 

variable fx  such that c fx x≥ , where cx  is an upper bound on the magnitude 

of fx . Note that this can be extended to grouping some or all of the free 

variables instead of using a separate cone for each variable, although increasing 

the size of the cones may affect the sparsity of the Schur complement system. 

Of these schemes, the last three were considered in preliminary simulations with the 

quadratic cone embedding with one free variable per cone providing the best 

performance in terms and numerical stability, but not necessarily runtime. Compared to 

the perturbation method and the addition of slack variables, embedding the free 
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variables in a second-order cone generally leads to an increase in the number of non-

zeros in the ( )1,1  block of the augmented system and also in the Schur complement. 

The diagonal “block” associated with a free variable in the ( )1,1  block of the 

augmented systems are based on the NT scaling matrices for the second-order cone 

embedding, which also requires additional work to compute. In contrast, the 

perturbation method and addition of slack variables leads to a diagonal “block” (the 

perturbation method has a 1 1×  diagonal matrix and the addition of slacks leads to a 

2 2×  diagonal matrix). 
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Chapter 2 Computing the search direction in 
IPMs 
Traditionally, the systems defining the search direction have been solved using direct 

solution methods, specifically, Cholesky decomposition on the normal equations, as this 

approach is generally much more robust than iterative solution schemes [78]. 

Unfortunately, when using state-of-the-art direct solution methods, such as MA57 [79], it 

is not uncommon to observe the ratio of storage between the factorisation of A  and A  

itself to exceed several orders of magnitude. For three-dimensional and large-scale two-

dimensional problems that have refined or large meshes, the time complexity to 

construct such large factors and the space complexity involved in storing them is very 

expensive. Furthermore, because of the increasingly ill-conditioned nature of the system 

defining the search direction as the optimisation scheme nears a solution, direct methods 

become susceptible to round-off error, and may not be able to compute sufficiently 

accurate search directions. 

A potential solution to storage and runtime requirements is sought using iterative 

solution methods. These methods may also provide improved solution approximations 

when direct methods fail to compute sufficiently accurate search directions. In the 

available conic optimisation package SeDuMi [58], if the solution obtained using the 

Cholesky decomposition does not satisfy some accuracy requirement, the factorisation 

is then used as a preconditioner for the PCG method [80] which attempts to improve the 

determined direction. Similarly, in SDPT3 [70], [81] the Cholesky factorisation is always 

used as a preconditioner in the symmetric QMR method [82]. Iterative refinement 

schemes are also used to ensure that the norm of the residual is small enough to provide 

a useful direction [83]. Iterative solution methods attempt to solve a given linear system 

without having to fully factor the coefficient matrix, and generally only requires a few 

additional vectors to be stored with the most expensive operation performed being 

matrix-vector multiplications. This means that, for a given system of dimension n , the 

time-complexity is reduced from ( )3O n  for direct methods to ( )2O n  for iterative 

methods. Similarly, the additional storage requirements are reduced from ( )2O n  for 

direct solution methods to ( )O n  for iterative schemes. Note that, in practice, sparsity is 
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exploited for both direct and iterative schemes, making the asymptotic complexities 

significantly less than that described, although the basic difference in the complexity of 

the underlying methods remains. 

The convergence of iterative solution schemes depends in a non-trivial way on the 

distribution of the eigenvalues and the condition number of the coefficient matrix. The 

augmented system and the larger system with coefficient matrix (1.28) defining the 

search direction have both positive and negative eigenvalues, which will generally mean 

slower convergence will be exhibited by a Krylov subspace solver. All forms of the 

search direction generally have increasingly large condition numbers as the IPM 

approaches a solution. Thus the use of preconditioners to improve the spectrum and 

conditioning of the coefficient matrices is necessary. Unfortunately, the common 

algebraic preconditioners (e.g. incomplete factorisations and approximate inverses) 

often do not significantly improve convergence due to the presence of indefiniteness, 

large condition numbers, a lack of diagonal dominance, and the absence of decay in the 

coefficient matrices in question [78]. Where possible, exploitation of the block-structure 

and details of the block components is necessary. This leads to the development of 

highly specialised preconditioners, which are often not suitable for solving systems 

outside their intended use. It is because of these difficulties, and the robustness of the 

direct solvers with their high performance on modern computers, that has seen the 

widespread use of direct solvers, and in particular sparse Cholesky factorisations along 

with the exploitation of supernodes, in state-of-the-art IPM implementations. A brief 

overview of direct methods is given below, providing a solid grounding for the 

development of effective preconditioners for the iterative methods discussed afterwards. 

2.1 Direct solution schemes 
The most common direct solution schemes for sparse matrices rely heavily on the 

relative ease of solving a triangular system. Popular direct methods such as LU  and 

LDU  factorisations are equivalent variants of Gaussian elimination for reduction to a 

product of lower and upper triangular matrices, L  and U , respectively (and a diagonal 

matrix, D , in the latter case), which are amenable to providing a solution to systems of 

the general form = =Ax LDUx b  by first solving =Lc b , then =Dd c , and finally 

=Ux d . Different computational orders for computing the same (in exact arithmetic) 
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factors provide equivalent approaches to Gaussian elimination while allowing better use 

of different hardware architectures for efficiency and performance [84]. These methods 

are generally referred to as up-looking, left-looking, and right-looking, and lead to the 

three main approaches used in available packages, up-looking for very sparse matrices, 

supernodal factorisation, and frontal methods, respectively [85]. The up-looking 

methods compute one row of the factors at each step, the left-looking methods compute 

one column each step, and the right-looking methods update the active submatrix (the 

bottom right submatrix of entries of the rows and columns for which a pivot has not yet 

been chosen) with a newly chosen column of L  and row of U  at each step. For 

symmetric systems, simplifications to the general Gaussian elimination schemes 

exploiting the symmetric nature of the coefficient matrix as well as the factors generally 

result in worthwhile benefits in terms of both the amount of work required to compute 

the factors and the amount of memory necessary to store them. Further benefits are also 

available for symmetric positive definite systems (those systems satisfying 0T ≥x Ax  

for all x  of suitable dimension). Orthogonal methods, the most common being QR  

factorisation, with orthogonal Q  and upper triangular R , are alternative solution 

methods, but are generally less efficient in terms of runtime and required storage [86]. 

Another factorisation scheme is that of the SPIKE algorithm, computing =A DS  for 

diagonal D  and a block-tridiagonal matrix S  with identity matrix blocks along its 

diagonal [87]. The method is suitable for narrow banded linear systems, and is designed 

with parallelisation in mind. Because of the need for a narrow bandwidth, the scheme 

will not be considered in this Thesis. A brief overview describing and comparing the 

different approaches for symmetric matrices is given. Unsymmetric methods are not 

considered given that (1.28)-(1.39) are symmetric, although it should be noted that the 

package SDPT3 does use LU  factorisation when sufficient accuracy is not obtained 

using the symmetric solution schemes. 

2.1.1 Gaussian elimination 
Gaussian elimination reduces the coefficient matrix to upper triangular form by making 

the entries below the diagonal equal to zeros, column-by-column. For symmetric 

systems, the required storage may be halved by computing only one of the two factors 

(as each is the transpose of the other). In order to preserve the symmetry when 
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reordering, the permutations must be symmetric and so entries on the diagonal remain 

on the diagonal after reordering. Because of the possibility of having zero entries on the 

diagonal in symmetric indefinite systems, the Bunch-Kaufman factorisation preserves 

symmetry by using 2 2×  block pivots (where the block pivot satisfies some numerical 

threshold), leading to the factorisation T TPLDL P , where P  is a permutation matrix 

[88]. The algorithm requires (when not exploiting sparsity) 3 / 3n  floating point 

operations (FLOPs), 2( )O n  comparisons and 2( ) / 2n n+  storage for a full-storage 

(symmetric) matrix [34]. 

Fortunately, significant savings may be gained by exploiting sparsity and operating only 

on the non-zero entries in the original coefficient system and the resulting factors. This 

makes the computer code significantly more complex, but results in huge improvements 

in runtime, especially for cases in which there are many fewer non-zeros than 2n . 

Although a precise statement on the number of FLOPs and amount of storage required 

is not possible for sparse methods in general, the number of non-zeros in the coefficient 

matrix provide a rough indication of the work and storage requirements [84]. 

Unfortunately, a basic implementation of a sparse direct scheme will often not achieve a 

significant fraction of the peak machine speed and nor that of its dense factorisation 

counterparts. This issue is addressed by identifying portions of the scheme that allow 

dense submatrices to be exploited with dense matrix kernels that are implemented on 

most systems with standard interfaces in the collections known as BLAS and LAPACK. 

Because of their importance in many programs, vendor-supplied libraries such as Intel’s 

MKL (Math Kernel Library) have often had significant effort spent on them to ensure 

that they operate very efficiently. In addition to the vendor-supplied libraries, open 

source libraries such as ATLAS [89] and OpenBLAS [90] use both low-level tuning and 

autotuning to achieve high performance on most platforms. Autotuning enables a high 

percentage of peak speed to be achieved on most systems by performing numerous tests 

upon installation to determine which approaches achieves the highest performance in 

each of a wide range of cases, and based on the characteristics of the data supplied at 

runtime, the most efficient approach is chosen to perform the computations. The two 

most common direct methods for sparse schemes that utilise these dense matrix kernels 

are the supernodal and multifrontal methods. 
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2.1.1.1 Direct method overview 
In order to exploit dense matrix kernels, it is necessary to know in advance the non-zero 

structure of the factor. Define the graph, TL L+
G , which represents the sparsity pattern of 

the matrix T+L L , where T n n×= ∈A LL  , with vertices 1 i n≤ ≤  and an edge between 

vertices i  and j  if and only if 0ijl ≠  (ignoring numerical cancellation). The graph is 

then known to have edge ( ),i j  if a path from i  to j  exists in the graph of A , AG , 

through vertices less than ( )min ,i j  [91]. The simplest case including fill-in can be seen 

for the matrix with sparsity pattern ( ×  denoting a non-zero and diagonals are numbered 

for ease of identification) 

 
1

2
3

× × 
 × 
×  

  (2.1) 

with the graph of Figure 2. 

 
Figure 2. The undirected graph, AG , of the matrix with sparsity pattern (2.1). 

Here, there is a path from node 2  to 3  (and vice versa) via ( )1 min 2,3< , and thus 32l  

will be non-zero. The graph TL L+
G  is shown in Figure 3. 

 
Figure 3. The undirected graph, TL L+

G , of the matrix with sparsity pattern (2.1). 

The symbolic analysis used in most solvers, however, uses the elimination tree, T  [92]. 

The elimination tree for L  is easily described whereby each node j ’s parent is the first 

non-zero in column j  of L , and also results from pruning the directed graph LG  of L  

(that is, removing some subset of edges from LG ) such that the reach from any node is 
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not affected. A directed graph of L  has an edge from i  to j  if and only if 0ijl ≠  (and 

paths go with the direction of the edges). Given the block form 

 11 11 21 11 21

21 22 22 21 22

T T T
T

l l a
    

= = =    
     

L L l A a
LL A

l a
, 

where 11L  is assumed known and the bottom row of L , 21l  and 22l , is to be computed 

(note that 21l  and 21a  are row vectors). This leads to 11 21 21
T T=L l a  and 22 22 21 21

Tl a= − l l . 

The sparsity pattern of the bottom row of L  is thus defined by the triangular solve with 

the last column of A . This is known to be defined by the reach of the set of vertex in 

the last column of A  on the directed graph of 11L , 
11LG . The reach of a given vertex is 

defined as all vertices reachable via a path in 
11LG  [93]. If, for some i j k< < , there are 

non-zero jil  and kil , then kjl  will be non-zero and there is a path from k  to i  via j  and 

thus removing the edge ( ),k i  from LG  does not affect the reachable nodes from k , nor 

from any nodes that have a path to k  [94]. 

To compute the elimination tree, one builds it progressively starting with the first row 

subtree, 1T , and proceeds row-by-row, computing each row subtree, iT  [85]. Two 

values are kept for each vertex, the parent and the ancestor. The ancestor array is 

simply a work vector that eliminates the need to walk through tree parent-by-parent, and 

instead skip to the greatest known ancestor of the vertex. Initially, all parents and 

ancestors are set to null. The first row subtree is always the trivial subtree containing 

just itself. For each subsequent row i  of A , each non-zero entry ija  will also be a non-

zero (structurally) in L , so the ancestor of j  is set to i  (as no values greater than i  

could currently be an ancestor of j ), and if j  has no parent then it is set to i . Because 

of fill-in, it is then necessary to go to j ’s previously greatest ancestor (before it became 

i ) to update it’s ancestor to i  and it’s parent to i  if it is null. This step is continued until 

a null greatest ancestor is encountered, at which point the next entry in row i  is 

considered. 

For example, given the matrix with sparsity pattern 
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, 

the row subtrees are shown in Figure 4. 

1 2 3 4 5                          T     T T T T  

 
Figure 4. Example row subtrees. 

Combining the row subtrees gives the full elimination tree in Figure 5. 

 
Figure 5. Example elimination tree. 

The sparsity pattern of row i  of L  is then given by the reach from each non-zero of 

row i  of A  in iT . The elimination tree is usually post-ordered, which enables the 

number of non-zeros in each column to be computed efficiently, and usually results in 

an ordering which often performs slightly better in spite of the fact that there is no 

change to the amount of fill-in [85]. The post-ordered elimination tree is computed by a 

depth-first search on the elimination tree, giving the post-ordered elimination tree in 

Figure 6. As can be seen, this just has 1 and 2 swapped. The row indices of each column 

are then usually computed by working through an up-looking Cholesky factorisation 

without doing any numerical computation. 
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Figure 6. Example post-ordered elimination tree. 

For the left-looking supernodal approaches, the elimination tree is also used to 

determine “fundamental” supernodes, defined as groups of adjacent columns that have 

identical sparsity patterns [95]. If a node only has a single child and that child has an 

identical sparsity pattern, then they can be combined into a supernode. If the column 

counts are known, then it is not necessary to check the sparsity patterns but simply 

compare the column counts (which will obviously only differ by 1 if they have an 

identical sparsity pattern). Knowing the sparsity pattern of the factor enables one to also 

consider how similar adjacent column sparsity patterns are and combine them into a 

supernode if there is little difference between them, thus trading some additional storage 

for a slightly larger supernode [95]. In the example shown, 3, 4, and 5 form a 

supernode. The numerical supernodal factorisation routine then uses four level 3 BLAS 

routines; the symmetric update (DSYRK), the Cholesky factorisation (the LAPACK 

routine DPOTRF), a sparse matrix-matrix product but using the dense kernel 

(DGEMM), and a triangular solve (DTRSM). 

The frontal method, upon which the multifrontal method is based, exploits the non-zero 

pattern, or sparsity of the coefficient matrix and is a right-looking method [96]. The 

frontal method was developed for use with finite element codes that eliminate a variable 

once all its interactions are assembled into the coefficient matrix [84]. The method can, 

however, be used for problems with general matrices. Essentially, the algorithm 

operates by adding rows to a frontal matrix, starting with the first. The frontal matrix is 

a dense square submatrix in which the indices are those of the rows that have been 

added but not yet eliminated. Once a column has become fully summed (a column is 

fully summed when no more entries will be assembled into the column), a pivot from 

the fully summed column may be chosen and the associated row and column removed 
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from the frontal matrix. Dense matrix operations may be used within the frontal matrix. 

The frontal method can also be extended to include multiple fronts that may run in 

parallel and is known as the multifrontal method [97], [98]. In the multifrontal method, 

the processing jobs are divided among processors based on the elimination tree [98]. 

The elimination tree allows identification of suitable substructures of the coefficient 

matrix that have pivots within them that have no influence on other substructures. This 

allows the variables corresponding to those pivots to be eliminated in the assembled 

substructure. There can be numerous substructures which are dealt with in a similar 

fashion before assembling two of the substructures together and eliminating any pivots 

which have no influence outside the newly joined substructure. This process continues 

until the newly joined substructure is the whole of the coefficient matrix (now in 

factored form). 

Supernodal and multifrontal methods form the basis for most of the more sophisticated 

and efficient direct solution software packages currently available. Multifrontal method 

implementations for symmetric indefinite systems include the Harwell Subroutine 

Library’s (HSL) MA57 [79], and the MPI-based parallel MUMPS [99]. PARDISO [100] 

implements the multifrontal method, as well as left- and right-looking supernodal 

approaches, although there is little difference between the methods in performance 

[101]. CHOLMOD [102] includes a left-looking supernodal Cholesky solver that is used in 

the popular software package MATLAB [103], and includes an implementation utilising 

GPUs for the dense matrix kernels (although this is not available through MATLAB). Left-

looking supernodal techniques are recommended by some authors for solving the 

normal equations in interior point method implementations for LPs and SQLPs [40], 

[57], [104]. 

Gould and Scott [105] undertook a numerical comparison between the popular direct 

solution packages including MA57, MUMPS, CHOLMOD and PARDISO among others. The 

tests were performed on a single processor, meaning no parallelisation benefits were 

included. In their indefinite test cases, PARDISO was found to be superior in terms of 

factorisation runtime, with MA57 in second, although there was little between the two 

when considering the analyse, factorise, and solve phases because of the increased 

likelihood of requiring iterative refinement with PARDISO. Memory usage mirrors these 
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results, with PARDISO using the least memory and MA57 the second-least. They note that 

the Oblio [106] user documentation reports that for large three-dimensional problems, 

left-looking and right-looking factorisations can outperform the multifrontal 

factorisation [101]. For symmetric positive definite systems, they report that CHOLMOD 

provides the best balance between the analysis phase, the factorisation, and the solve 

phase, and recommend PARDISO and MA57 for situations in which multiple solves are 

required [105].  

2.1.2 Orthogonal factorisation 
The orthogonal QR  decomposition is the reduction of a matrix to the product of an 

orthonormal matrix, Q , and an upper triangular matrix, R . The computation of Q  and 

R  is commonly achieved through modified Gram-Schmidt orthogonalisation or 

Householder reflections, although Givens rotations can also be used [34]. 

The classical Gram-Schmidt orthogonalisation, which fills the i th column of R  and Q  

at each iteration, is numerically unstable in finite precision arithmetic. By modifying the 

calculations so that the algorithm fills the i th row of R  instead, it is equivalent to the 

classical algorithm producing the same factors in exact arithmetic, but results in smaller 

errors with finite precision arithmetic. This is known as the modified Gram-Schmidt 

procedure and is the most common orthogonalisation method in use [34]. Unfortunately, 

in some cases the rounding errors from the modified Gram-Schmidt scheme can still 

affect the orthogonality of the resulting system. By checking whether the norm of 

orthogonalised vector is significantly smaller than the pre-orthogonalised vector norm, 

the effect of cancellation can be identified, and rectified by performing 

reorthogonalisation [107]. 

Note that Householder reflections are more numerically stable but cannot be stopped 

before completion (truncated), and so are less attractive for the construction of 

orthogonal bases in iterative solution methods [86]. The ability to truncate the Gram-

Schmidt orthogonalisation suggests an iterative procedure, which, if taken to 

completion, is known as the Full Orthogonalisation Method (FOM) [86]. 

Multifrontal implementations of QR  factorisations have been developed, see, e.g. 

[108], [109], although Gaussian elimination or a variant of it is commonly used over 
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QR  factorisation. This is because Gaussian elimination schemes generally require 

approximately half the number of floating point operations compared with QR  

factorisations [86]. 

2.1.3 Reordering 
The differences in the number of non-zeros (and, consequently, the amount of work to 

compute them) between the factorisation of a sparse coefficient matrix in permuted 

form and unpermuted form can be very significant. Unfortunately though, the optimal 

ordering is NP-complete [110]. This has led to a large body of work on heuristic 

methods for computing orderings that minimise the number of non-zeros in the factored 

matrix. 

One of the earliest methods is that of Markowitz [111], who proposed choosing an entry 

ija  as a pivot in a general matrix if it minimises the Markowitz count, ( ) ( )1 1i jr c− − , 

where ir  is the number of entries in row i , and jc  the number of non-zeros in column 

j , and it satisfied some numerical criterion to ensure stability of the factorisation. This 

method was used to improve the efficiency of factorising the basis matrix in the 

Simplex method for linear programming, and is computed as the factorisation 

progresses. Markowitz’s scheme simplifies when considering only symmetric 

permutations for symmetric positive definite matrices in which the diagonal entries are 

known to be stable pivots [72]; symmetry means that ir  and ic  are the same, so 

minimising the Markowitz count is equivalent to finding the minimum row count in the 

active submatrix (known as the degree), and positive definiteness avoids the need for 

numerical stability thresholds. This simplification is known as the minimum degree 

ordering [112], and the related but very efficient approximate minimum degree (AMD) 

method which is in wide use today [113], [114]. Markowitz also noted the possibility of 

minimising the number of fill-in entries at each step but did not pursue it, favouring the 

simpler approach described above. This scheme is now referred to as minimum fill (or 

minimum local fill) scheme, and approaches that seek to find a pivot leading to 

approximate minimum local fill can be found in use in ordering schemes for interior 

point methods [115]. 
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The nested dissection orderings are based on a different approach and can be very 

effective for some large-scale matrices. Some nested dissection orderings are based on 

graph partitionings, with one of the most popular packages for computing nested 

dissection orderings being METIS [116]. The nested dissection approach usually follows 

a nested bisection recursively, where each bisection seeks a permutation of the matrix 

into 

 
11 13

22 23

31 32 33

 
 
 
  

A A
A A

A A A
. 

Here, the separator is the set of indices contained in 33A  and the two sets separated are 

the indices contained in 11A  and 22A , respectively. Each of these two index sets is then 

treated in the same way, recursively, down to some specified depth. The partition 

generally seeks two sets of the same size with a minimum separator set. When the sets 

become small enough, a different ordering scheme is often used such as a minimum 

degree or minimum local fill method (METIS uses AMD). 

Another method that was proposed early on and still finds some use today in reordering 

for incomplete factorisations (described below) is that of the Reverse Cuthill-McKee 

(the Cuthill-McKee ordering [117] was found to lead to generally better performance 

when it was reversed [118]). This method simply takes the reverse of the permutation 

obtained by ordering the nodes in the order that they are visited in a breadth-first search. 

While other ordering approaches have been proposed in the literature, those methods 

described above constitute the most applicable approaches for the needs considered in 

this Thesis. 

2.2 Inexact search directions in IPMs for conic optimisation 
Instead of computing (practically) exact search directions using direct methods, it may 

be advantageous to utilise iterative methods and reduce the accuracy at which the search 

direction is determined. This will significantly improve storage requirements, and may 

also improve runtime performance. The use of iterative methods would thus allow 

problems which are prohibitively large to be solved. 
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Computing the search direction in IPMs using iterative solution methods has been 

studied by numerous authors. Indeed, it was even suggested by Karmarkar [45] in his 

landmark paper that iterative methods could be used to determine the search direction. 

In the literature, there are interior point algorithms using iterative solution methods to 

compute the search direction with proven polynomial convergence for both linear 

programming and semidefinite programming. An overview of these schemes, as 

relevant, is outlined below, but first, a summary of iterative method termination for 

general systems of linear equations is presented, which touches on some important 

issues when using iterative methods, such as finite termination. But first, the 

performance of various linear algebra operations that comprise the major operations in 

both direct and iterative methods is discussed. 

2.2.1 The relative performance of basic linear algebra operations 
When comparing the use of direct and iterative solvers for a practical implementation, it 

is crucial to consider the relative performance of the basic linear algebra operations 

(referred to as basic linear algebra subprograms, or BLAS). The BLAS operations are 

grouped into three “levels” based on the complexity of the operation. So multiplying a 

vector of size n  by a scalar requires ( )O n  multiplications and is thus a level one 

operation. Multiplying a dense n n×  matrix by a vector of size n  requires ( )2O n  

floating point multiplications and additions and so is level two BLAS. Finally, 

multiplying two n n×  dense matrices together requires ( )3O n  floating point operations 

and is a level three BLAS operation. Because of the way modern computers are 

designed and built, the peak achievable speed for each level of these operations varies 

considerably. The higher level operations generally have a much greater arithmetic 

operation to memory transfer ratio. Consider that, for scaling a vector, each element of 

the vector is loaded once to be used in a single multiplication before being stored again. 

Including the load of the scaling value, there are a total of 2 1n +  memory transfers 

(either loads or stores) and just n  multiplications, giving a floating point operation 

(flop) to memory transfer ratio of 
2 1

n
n +

. A dense matrix-vector multiplication requires 

at least loading each entry in the matrix and vector once, and storing each element of the 

resulting vector once, with 2n  multiplications and 2n n−  additions, has a theoretical 
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upper bound on the ratio of 
2

2

2 2 1
2 2

n n n
n n n

− −
=

+ +
. Obviously, the ratio for 1n >  is larger for 

the matrix-vector product than the vector scale. Similarly, the upper bound on the ratio 

for a dense n n×  matrix-matrix multiplication is n  times the number of operations in 

matrix-vector product, and the vector load and store is replaced by a matrix load and 

store, giving 
3 2

2

2 2 1
3 3

n n n
n
− −

= . This is greater than both the level one and the level 

operations for 1n > , and generally provides the processor with enough computational 

work to hide the latency of the memory transfer functions, resulting in an overall higher 

number of arithmetic operations per second. Importantly, the triangular factorisation of 

a matrix and solving a system of equations with a triangular matrix are both level 3 

BLAS operations, and turn out to be governed by matrix-matrix multiplication speed. 

When suitably arranged, the factorisation of a dense matrix can achieve near the same 

speed as that of matrix-matrix multiplication. 

Unfortunately, an intelligent exploitation of sparsity generally requires some extra level 

of indexing to avoid working with any zero elements explicitly, which leads to 

additional memory operations. This is why the high-performance direct solvers attempt 

to arrange the entries of the matrix in such a way that certain portions of the matrix may 

be treated as dense. In this way, factorisation of sparse matrices may still achieve speeds 

near the dense matrix-matrix multiplication speed [102]. This is in contrast to the 

iterative solvers, which, in unpreconditioned form, are comprised of sparse matrix-

dense vector multiplications, dot products, vector additions, and vector scaling – all 

level one and two BLAS. Generally speaking, solution of a dense linear system can 

achieve around 70% of a machine’s peak speed, while sparse matrix-vector multiply 

will often only achieve around 10% of peak speed [119]. This means that an iterative 

solver will need to perform less than 7 ×  fewer arithmetic operations than that involved 

in the factorisation and substitution phases of a direct solver in order to solve a system 

faster than the direct method (assuming that the sparse matrix-vector multiply 

dominates the work performed by the iterative solver). This difference is amplified 

considerably if more than one linear system is to be solved, as is the case for the 

Mehrotra-style predictor corrector methods. Additionally, it is the relatively high 
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number of transfers in the lower level BLAS operations that form the bottleneck in 

highly parallel implementations of iterative methods [107]. 

Because of this fundamental difference between the different levels of operation, just as 

in the high-performance direct solvers using dense matrix kernels to achieve high 

speeds, it is imperative that any opportunities to utilise higher-level operations be 

exploited. For example, if many iterations are expected when using an iterative solver to 

obtain the search direction within a simplified HSD approach or similar, both (1.35) and 

(1.36) could be solved simultaneously instead of sequentially (note that there are three 

independent right-hand sides in the case of the three-term HSD method). While 

performing exactly the same number of arithmetic operations (assuming the same 

number of iterations is required for each right-hand side), solving the systems 

simultaneously will load the entries of the coefficient matrix from memory half the 

number of times compared to solving them one after the other. 

2.2.2 Iterative method termination 
The nature of iterative methods for large linear systems requires some form of method 

termination, which will often be long before full working precision is achieved. Barrett 

et al. [120] define a good stopping criterion as one which can: 

1. Identify when the error, ( ) ( ) *k k= −e x x , is satisfactorily small. 
2. Identify stagnation or near-stagnation. 
3. Limit the maximum number of iterations spent by the method. 

The first requirement above is the most difficult to identify, as the error is not readily 

available without the solution a priori. However, tests can be performed which bound 

the error using relations between norms of A , ( )kx , b  and ( )kr . Additionally, a stop 

tolerance, s , is required which should be less than one but greater than the machine 

precision, which for double precision IEEE Standard Floating Point Arithmetic is 
53 162 10− −≈ . 

Arioli et al. [121] use backward error analysis to develop a family of termination tests. 

Setting 

 ( )
( )

( )
max

k

i
k

i

ω =
⋅ +

r

E x f
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for some matrix E  and vector f , the iterations may be terminated when sω ≤ , 

indicating the solution to a nearby system has been found. Specifically, 

 ( )( ) kδ δ+ = +A A x b b , 

for δ ω≤A E  (component-wise) and δ ω≤b f . Skeel [122] use this scheme to 

guarantee the numerical stability of Gaussian elimination through iterative refinement 

with =E A  and =f b . However, Arioli et al. [121] point out that with its reliance on 

the non-zero entries of A , this may not be suitable for iterative solvers as the 

convergence of iterative schemes relies more heavily on its eigensystem. They suggest 

two alternative choices for E  and f . Taking =E 0  and 
∞

=f b e , with e  the column 

vector of all 1’s, 

 
( )k

ω ∞

∞

=
r
b

, 

which may be generalised to other mutually consistent norm pairs. This test ensures the 

residual has been reduced by a factor of the stop tolerance. It is important to note that 

the use of b  is not equivalent to the use of (0)r  for (0) =x 0 . With an initial estimate 

(0) ≠x 0 , (0)r  may be very large leading to premature termination. However, using 

b  may lead to the opposite problem in that it may be very difficult to satisfy the test 

for ill-conditioned A  with x  close to the null-space of A , as 
1∞ ∞

A x b  [120]. 

This means for good approximations ( )kx , ( )kr  may still be quite large. 

By setting T
∞

=E A ee  (with 
∞

=f b e  still) and again generalising to all mutually 

consistent norm pairs, 

 
( )

( )

k

kω =
⋅ +

r
A x b

. 

Barrett et al. [120] state that even an order of magnitude estimate of A  is sufficient 

for the above. Note that this form is generally less strict than the previous test, but both 

cases result in a final forward error bound of [120] 
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 ( ) * 1 ( )k k−− ≤ ⋅x x A r . 

Alternatively, Greenbaum [123] suggests estimating the spectral condition number for 

symmetric A , ( )κ A , using the Ritz values (the eigenvalues of T ), where the 2 -norm 

leads to max min( ) /κ λ λ=A . This allows terminating the iteration process when 

 
( )

( )( )
k

k sκ
−

⋅ ≤
b Ax

T
b

, 

where the right hand side is an upper bound to the relative error norm ( ) ( )/k ke x . 

2.2.3 Iterative method termination within IPMs 
Polynomial complexity proofs have been obtained when solving the search directions 

inexactly in interior point methods for linear programming [124]–[128]. Mizuno and 

Jarre’s [124] approach was quite theoretical and may not be suitable for implementation 

directly. Korzak’s [126] method requires iterates to remain feasible once infeasibility is 

removed, requiring significant effort in determining the search directions and making it 

rather impractical if this situation ever arises. Al-Jeiroudi [129] uses a progressive 

tolerance to terminate the PCG method within the Higher Order Primal Dual Method 

(HOPDM) interior point solver package. Initially, the tolerance is set to 210− . When the 

relative duality gap is less than 310− , the tolerance is reduced to 310− , and when the 

relative duality gap falls below 410− , the tolerance is reduced again to 410− . This 

tolerance is used to compare the relative residual norm. The polynomial complexity 

bounds on these path-following IPMs generally require the Newton direction to be 

solved for some forcing term times the duality gap. Monteiro and O’Neal [127] prove 

convergence using a general class of iterative solver on the normal equations with a 

tolerance proportional to nµ , which is likely to be a difficult target when solving 

large-scale problems. 

Wang and O’Leary [130] use the progressive tolerance scheme 

 

3

3 3

4 4

5.0 10  for early iterations                
min( 10 ,10 ) for middle iterations
min( 10 ,10 ) for end iterations     

s g
g

−

−

−

 ×
= ×
 ×

, 
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where g  is the relative duality gap from the previous IPM iteration. Interestingly, their 

approach switches to a direct method when the iterative method is having trouble 

converging. They do not prove convergence using this method, but do provide 

successful numerical results. Similarly, Bergamaschi et al. [131] use 210s −=  and 
410s −=  with a maximum number of iterations between 50  and 100  in determining the 

search direction for quadratic programs from the augmented equations. 

There have also been polynomial convergence results published for solving SDPs with 

IPMs incorporating inexact search directions. In the first of such works, Kojima et al. 

[132] look to generalise the convergence proof for SDP across a class of search 

directions, noting that all search directions are equivalent when the iterate lies on the 

central path, and relax the centrality condition to a centrality inequality. Zhou and Toh 

[133] provide an iteration complexity for their inexact infeasible IPM the same as the 

best known exact complexity. They require the solution to the normal equation form for 

the search direction to be solved so as ( ) 1 ( )
1

T T k
k kγ ρθ σ

−
≤A AA r , where the kθ  terms 

are used to drive the iterates towards feasibility and are less than or equal to the 

corresponding complementarity gap, the kσ  values are defined as a sequence of scalars 

with a finite sum, ( )1 0,1γ ∈  and ( ) ( )( )* *1 Tr Tr
n

ρ ≥ +X S  are constants, A  defines the 

equality constraints, and r  is the residual vector. Similarly, solving the augmented 

equations requires that the same inequality as the normal equation is satisfied, as well as 

the residual for the second block equation being less than the right-hand-side in the 

normal equation inequality. Solving some large-scale dense SDPs with an iterative 

solver to compute the search direction, Toh [134] simply requires that the residual 

vector in solving a reduced form of the augmented equations be less than 0.05  times the 

norm of the residual of the right-hand-side of the full block 3 3×  system of equations 

defining the search direction. 

There have been no studies solving SOCPs using IPMs with inexact search directions. 

However, due to the similarity between LP, SOCP, and SDP, and given the general use 

of convergence tolerances for the residual norm being related to the duality gap, it 
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appears that IPMs solving SOCPs with inexact search direction should aim to compute 

the search direction within some factor of the duality gap also. 

It should be noted that when solving the Schur complement form of the search direction, 

the primal infeasibility is affected by the accuracy of the solution [76]. This can lead to 

an increase in the primal infeasibility (or stagnation) as the IPM approaches a solution, 

even when direct solvers are used, because of the severe ill-conditioning present in the 

Schur complement system [76]. Cai and Toh show that if ξ  is the residual vector after 

solving the Schur system for yd , then the primal infeasibility after taking the step with 

step length α  is ( )1p pα α+ = − +r r ξ  for p = −r b Ax , where the superscript +  indicates 

the value after the step is taken, and the problem is not embedded in a HSD form. While 

the impact on the primal infeasibility for a HSD embedded problem will not be the 

same, the effect is similar. It is thus reasonable to require the tolerance in the search 

direction to be smaller than the primal infeasibility. Similarly, the dual infeasibility 

should not increase at any iteration because of poor accuracy in the search direction. 

This suggests seeking a search direction with a residual norm at least as small as the 

minimum of the primal and dual infeasibilities. 

2.3 Iterative solution schemes 
Iterative solution schemes can be split into two basic categories, stationary and non-

stationary. Both iterative method classes seek out ( )kx  with a progressively better 

approximation to the true answer. Without a priori knowledge of the true answer, or a 

sufficiently close approximation to it, the residual is often used to determine whether 

the approximate solution is accurate enough. For each k  less than the maximum 

number of iterations allowed, ( ) ( 1)k k−− < −b Ax b Ax  if the method is to converge. 

Stationary methods are characterised by construction of ( )kx  of the general form 
( ) ( 1)k k−= +x Bx c , with neither B  nor c  depending upon the iterate k  [120]. Common 

stationary schemes include the Jacobi, Gauss-Seidel, Successive Over-Relaxation 

(SOR), and Uzawa methods. The Jacobi, Gauss-Seidel and SOR methods are relatively 

simple but often require significantly more iterations (and hence computational effort) 

than their non-stationary counterparts. In general, they are also less robust than Krylov 
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subspace iteration methods. The Uzawa method was developed to solve saddle point 

systems similar in form to the augmented systems and can be quite efficient. 

The non-stationary Krylov methods (we do not consider non-stationary methods that do 

not seek a solution in the Krylov subspace) search out an approximation ( )kx  in the 

Krylov subspace,  , defined by ( ) (0) (0) 2 (0) 1 (0)span{ , , ,..., }k k−= r Ar A r A r  (not to be 

confused with the cone constraints of the optimisation problem). In general, the initial 

solution estimate, (0)x , will be set to zeros, giving the initial residual, (0)r , equal to the 

right-hand side vector, b . The Krylov subspace methods can be categorised into four 

general approaches; the Ritz-Galerkin approach, the minimum norm residual approach, 

the Petrov-Galerkin approach and the minimum norm error approach [107]. All four, 

however, are based on the construction of an orthogonal basis, which is completed using 

the Arnoldi algorithm or a simplification of it. 

In 1951, Arnoldi proposed an iterative method to solve the eigenproblem λ=Ax x . The 

method happens to reduce a given matrix, A , to Hessenberg form while computing an 

orthogonal basis for it. That is, the algorithm factors A  as T =Q AQ H , or =AQ QH , 

with Q  orthogonal and H  upper Hessenberg. The Arnoldi method is often 

implemented with modified Gram-Schmidt orthogonalisation or the reorthogonalised 

version [135]. However, Householder orthogonalisation may be a reasonable alternative 

when developing software where robustness is critical [136]. Note that when A  is 

symmetric, H  reduces to a tridiagonal matrix, requiring new basis vectors to be 

orthogonalised with the two preceding vectors only. In the following, the partially 

constructed matrix (leading to Q ) after k  steps of the orthogonalisation procedure shall 

be denoted ( )kV , thus giving ( ) ( ) ( , )
T
k k k k=V AV H , a k k×  upper Hessenberg matrix. 

The Lanczos algorithm [137] is a simplification of the Arnoldi algorithm for symmetric 

matrices. When A  is symmetric, the Hessenberg H  is also symmetric and thus 

tridiagonal. This leads to three term recurrences involving the sub-diagonal, diagonal, 

and super-diagonal terms of H . This negates the need to store the basis vectors as the 

method proceeds. Exploitation of this short three-term recurrence is the basis for the 

Lanczos method and the iterative solution schemes Conjugate Gradients (CG) and 

Minimum Residual (MINRES). 
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2.3.1 Stationary methods 
One of the simpler stationary schemes is the Jacobi method. Given a square linear 

system, the Jacobi iteration proceeds by refining the current solution estimate through 

 
( 1)

( 1)
k

i ij jj kk
i

ii

b a x
x

a

−
≠+

−
=

∑
. 

This method requires that the coefficient matrix be diagonally dominant for the process 

to converge, where a matrix is diagonally dominant if ii iji j
a a

≠
≥ ∑  for all rows i  

[120]. Note that each iteration creates a solution estimate, x , which overwrites x  at the 

end of each iteration. An improvement on the Jacobi scheme simply updates the 

solution estimate in place, thus reducing storage by an n -vector. This is known as the 

Gauss-Seidel method, and leads to improved convergence behaviour in many cases over 

the Jacobi method [120]. Similar to the Jacobi method, it requires strict diagonal 

dominance or symmetric positive definite matrices for convergence. 

The SOR method attempts to improve on the Gauss-Seidel method through the use of a 

weighting coefficient to accelerate convergence. The solution estimate is updated as 
( ) ( ) ( 1)(1 )k k k
i i ix z xω ω −= + − , with ( )kz  being the k th Gauss-Seidel iterate and ω  the 

relaxation factor. However, the estimation of an optimal value for ω  is difficult, 

requiring a priori knowledge of the spectral radius [34]. 

The first iterative methods to be developed and applied specifically to saddle point 

problems are the Arrow-Hurwicz and Uzawa methods [138]. These methods are still 

being actively developed today [78], and can even be found in large scale FELA 

implementations (see, for e.g., [31], [32]). Essentially, the Uzawa algorithm attempts to 

solve systems of the form 

 
T     

=    −     

x pA B
y qB C

 

through the updates [139]: 

 
( 1) ( )

11
( 1) ( ) ( 1) ( )

Solve 

Update ( )

k T k

k k k kω

+

+ +

= −

= + − −

A x p B y
y y Bx Cy q , 

Elman and Golub [139] show that the optimal choice for ω  is  
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min max

2ω
λ λ

=
+

, 

where minλ  and maxλ  are the smallest and largest eigenvalues of the Schur complement, 

1 T−− −C BA B  (where it is possible that =C 0 ), respectively. To improve the rate of 

convergence, the Uzawa method can also be preconditioned, giving the algorithm based 

on the two steps 

 ( )
( 1)

( 1) ( ) 1 ( 1) ( )

Solve 

Update 

k T

k k k k
Sω

+

+ − +

= −

= + − −

Ax p B q

p p Q Bx Cy q
, 

where SQ  is an approximation of the Schur complement. Elman and Golub [139] also 

found that when using an iterative method to solve for ( 1)k+x , the method converges 

with a rate close to that of the exact Uzawa method. This kind of method falls under the 

category known as the inexact Uzawa method, and includes schemes where an 

approximation for A  is used in place of the original block. Note that this scheme is 

often applied to a saddle-point system of the same form as the augmented system after 

regularisation, and so A  is no longer trivial to invert or requires good approximate 

solves with the Schur complement. The inexact Uzawa scheme is defined by [140]  

 
( )( 1) ( ) 1 ( ) ( )

( 1) ( ) 1 ( 1) ( )( )

k k k T k
A

k k k k
Sω

+ −

+ − +

= + − −

= + − −

x x Q p Ax B y

y y Q Bx Cy q
. 

A common variant of the Uzawa method is the augmented Lagrangian Uzawa method. 

This approach instead solves the system 

 
T Tω ω  + + 

=    
    

xA B B B p B q
yB 0 q

 

using the Uzawa method. It similarly requires the scalar ω  to be set, but now the 

parameter affects both the convergence and the difficulty of obtaining the solution in the 

first step. Increasing ω  speeds up convergence of the Uzawa method while at the same 

time making the system in the first step more difficult to solve. It is widely known that 

the method converges for 
max

20 ω
λ

≤ ≤  and the optimal choice is 
min max

2ω
λ λ

=
+

, 
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where minλ  and maxλ  are the minimum and maximum eigenvalues of the Schur 

complement of the augmented Lagrangian system, ( ) 12 T Tω
−

+B A B B B  [71].  

The Arrow-Hurwicz method is often used in place of the Uzawa method for cases where 

solving with A  is too expensive [71]. Slow convergence is often experienced using the 

method, however, and so some form of preconditioned variant is usually employed 

which is very similar to the inexact Uzawa method [71]. 

2.3.2 Ritz-Galerkin approach 
The Ritz-Galerkin approach identifies ( ) ( )k k= −r b Ax  orthogonal to ( )k . The Galerkin 

condition with the Krylov subspace basis vectors is equivalent to ( )
( ) ( )T k
k − =V b Ax 0 , 

where ( )kV  holds the first k  Krylov subspace basis vectors. Given the initial solution 

estimate (0) =x 0 , giving (0) (0)
12

=r r v , leads to the simplification (0)
( ) 12

T
k =V b r e , 

where 1e  is the first canonical vector in k
 . The Galerkin condition then becomes 

( ) ( ) 0 12
T
k k =V AV y r e , for ( ) ( )k k=x V y . The Ritz-Galerkin approach leads to the full 

orthogonalisation method (FOM) [141] (the Arnoldi method for k n= ), and Conjugate 

Gradients method [80]. 

2.3.2.1 Conjugate Gradients 
The CG method is one of the most popular iterative solution methods. It is generally 

considered the solver of choice for symmetric positive-definite systems (see, e.g.[120], 

[142]). However, it is based on the Lanczos method, and thus requires that A  be 

symmetric. Furthermore, A  must be positive definite to guarantee the existence of the 

implicit LU  factorisation (or to satisfy the positive-definiteness of the A -inner 

product), and is not applicable to the indefinite systems arising in the optimisation 

process described here. This prevents the CG method from being able to solve the 

augmented system, although Dollar et al. [143] show that the preconditioned CG 

method with certain preconditioners can be used to solve a projection of this system. 

This is discussed further in  Block structured preconditioners below. 

Wang and O’Leary [130] used the CG method to solve (1.39). However, the CG method 

was not used towards the end of the optimisation when the required accuracy is 

considerably higher. They use an adaptive scheme that changes from the preconditioned 
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CG solver to a direct method when the optimisation process closes in on the solution 

[130]. 

The CG method updates the solution vector at each iteration by 

 ( ) ( 1) ( )k k k
kα−= +x x p , 

for some scalar α  and the search direction vector ( )kp . The residuals may also be 

updated at each iteration with 

 ( ) ( 1) ( )k k k
kα−= −r r q , 

where ( ) ( )k k=q Ap . kα  is chosen as 

 

2( 1)

2
( ) ( ),

k

k k kα
−

=
r

p Ap
 

at each iteration to minimise 1
( ) ( )
T
k k

−r A r . Importantly, when A  is not positive definite, 

( ) ( ),k kp Ap  no longer defines an inner product (as Tp Ap  is not guaranteed to be 

positive). 

The search direction vector can be updated with 

 ( ) ( ) ( 1)
1

k k k
kβ −

−= +p r p , 

where, using  

 
( ) ( )

( 1) ( 1)

,
,

k k

k k kβ
− −

=
r r

r r
 

ensures that the residuals are orthogonal (and the search direction vectors are A -

orthogonal). The coefficients computed above correspond to the entries in an LU  

factorisation of T , the tridiagonal Hessenberg. Note that the cost of applying the 

preconditioner, M , is the cost of solving a linear system with it. 

The convergence of the CG method is described by the well-known equation [34]  

 ( ) * (0) *12
1

k

k κ
κ

 −
− ≤ − 

+ A A
x x x x , 
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where κ  is the spectral condition number, equal to max min/λ λ  for λ  the eigenvalues of 

A , and *x  is the exact solution. 

Approaches that deal with multiple and sequential right hand sides have been 

developed. These methods exploit the identified eigenvectors corresponding to small 

eigenvalues, which are typically the reason for the slow convergence of the CG method 

[144]. 

2.3.3 Minimal norm residual approach 
The minimal norm residual approach locates ( )kx  at each iteration such that ( )

2

k−b Ax  

is minimal. This approach is the basis of the popular methods MINRES for symmetric 

indefinite systems, and Generalised Minimal Residual (GMRES) for general systems. 

Again, an orthogonal basis is constructed for the Krylov subspace, 

 ( ) ( 1) ( 1, )k k k k+ +=AV V H . 

Noting that the solution estimates are calculated as ( ) ( )k k=x V y  for some appropriate y , 

minimisation of the residual norm, ( )

2

k−b Ax , leads to 

 ( ) ( 1) ( 1) ( 1, )
12 2

k k k k kρ + + +− = −b AV y V e V H y , 

where (1)ρ=b v  and (0)

2
ρ = r . Noting that the common factor ( 1)k+V  is an 

orthonormal transformation, the residual norm can be simplified to 

 ( 1)
1 2

kρ +−e H y . 

This will be minimised by solving the least squares problem 

 ( 1, )
1

k k ρ+ =H y e  (2.2) 

for y . This is usually completed using a QR  decomposition of ( 1, )k k+H . 

2.3.3.1 Minimal Residual 
The MINRES algorithm minimises ( )

2

kr  for ( )kx  in (0) k+x  , and exploits the 

symmetry of A  and the tridiagonal Hessenberg reduction with the Lanczos process in a 

similar fashion to CG [145]. 
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The MINRES algorithm starts from a variant of the Lanczos relation [146]  

 ( 1) ( 1) ( ) ( 1)
1

k k k k
k k kβ α β+ + −

+ = − −v Av v v , 

with ( ) ( )
T

k k kα = v Av  and 1kβ +  chosen such that ( 1)

2
1kv + = , which, after k  iterations, 

leads to 

 ( ) ( ) ( ) ( 1)
1

k k k k T
k kβ +

+= +AV V T v e , 

where 

 

1 2

2 2( )k

k k

α β
β α

β α

 
 
 =
 
 
 

T


. 

Then ( )kT  may be either factored into LQ  form with Givens rotations or QR  form. 

Because of the tridiagonality of T , L  and R  have only three non-zero diagonals which 

provides the basis for exploitation of a symmetric A . Taking the QR  decomposition 

approach with T=T F R , where F  is the product of the Givens rotations, and defining 
1

( ) ( ) ( )k k k
−≡W V R , then (0)w  is a multiple of (1)v . The remaining columns of ( )kW  can be 

computed through ( ) ( ) ( )k k k=W R V , or 

 
( ) ( 1) ( 2)

( ) 2 3

1

( )k k k
k ρ ρ

ρ

− −− −
=

v w ww , (2.3) 

where 1 kkrρ = , 2 1,1krρ −= , and 3 2,k krρ −=  are the three entries in the k th column of 

( )kR . 

With the QR  decomposition of H  completed, y  can be obtained by solving (2.2) and 

updating x . This can be further simplified utilising the entries calculated for Q , leading 

to the update equation 

 ( ) ( 1) ( )k k k
kα−= +x x w , 

where kα  is the k th entry of 1βFe , but can be calculated without explicitly forming 

the product of Givens rotations. 
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MINRES minimises the 2 -norm of the residual over the space 

 (0) (0) 2 (0) (0)span{ , ,..., }k+r Ar A r A r . 

From this, the residual after k  iterations is of the form 

 ( ) (0)( )k
kP=r A r , 

where kP  is the k th degree polynomial with value 1  at the origin, minimising the 

residual 2 -norm. That is, 

 ( ) (0)

2 2
min ( )

k

k
kp

p=r A r , 

where kp  is the set of all polynomials of degree k  or less for which ( ) 1kp =0 . This 

leads to the residual norm bounds 

 
( )

2
(0) 1,...,

2

min  max ( )
k

k

k ip i n
p λ

=
≤

r

r
, 

where iλ  are the eigenvalues of A  [123]. Given the simple polynomial ( )1
kx

c− , it is 

clear that matrices with a tight clustering of eigenvalues around a single value are likely 

to exhibit good convergence. Furthermore, indefinite matrices with eigenvalues on 

either side of the origin are unlikely to exhibit good convergence because of the 

difficulties in approximating zero at a number of points while maintaining the value 1  at 

the origin. Even in the simple case when all the eigenvalues are contained within the 

two specific intervals [ ] [ ], ,a b c d∪ , with the k th degree polynomial 

 
( ( ))( )
( (0))

l
k

l

T q xp x
T q

= , 
2( )( )( ) 1 x b x cq x

ad bc
− −

= +
−

, 

l  equal to the integer part of / 2k , and lT  the l th Chebyshev polynomial, the residual 

2 -norm bound becomes 

 
( )

2
(0)

2

2

lk ad bc

ad bc

 −
 ≤
 + 

r

r
. 
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With the intervals placed symmetrically about the origin, the bound is the same as that 

obtained for positive definite A  with 2( / )d cκ = . However, the bounds are better for 

intervals not symmetric about the origin [123]. 

In their initial presentation, Paige and Saunders [145] warn that the condition number of 

the triangular factor of the Hessenberg approaches that of A , which can lead to errors 

in ( )kx  for ill-conditioned A . Furthermore, Sleijpen et al. [147] show that MINRES 

suffers from the propagation of rounding errors proportional to the square of the 

condition number. MINRES also requires SPD preconditioners to ensure the 

preconditioned system remains symmetric, which significantly limits the available 

choices for preconditioning for indefinite A . 

2.3.3.2 Generalised Minimal Residual 
The GMRES method was developed as a robust algorithm for solving linear systems in 

which the coefficient matrix is not positive real and symmetric [141]. Because of the 

nonsymmetric A , the GMRES method must use the Arnoldi method, and uses Givens 

rotations to construct the QR  factorisation and solve for y  in a similar fashion to 

MINRES. The updated solution estimate is then calculated as ( ) ( )k k=x V y , which 

unlike MINRES, requires all previously computed Krylov subspace basis vectors, ( )kv . 

The increased computational burden and storage costs involved with the use of all basis 

vectors, ( )kv , suggest using a restarted version of GMRES, denoted GMRES( m ) [141]. 

In this scheme, the GMRES algorithm is restarted every m  iterations. However, van der 

Vorst [107] points out that the choice for m  is difficult, as the speed of convergence 

may exhibit significant difference for nearby values of m . Embree [148] provides an 

example where convergence occurs in three iterations for 1m = , while for 2m = , 

GMRES stagnates. Saad [136] also states that GMRES( m ) can suffer from stagnation 

for semidefinite and indefinite coefficient matrices, while noting the prohibitive cost of 

attempting full convergence in n  steps. 

The original GMRES scheme used Givens rotations to decompose the upper 

Hessenberg, H , into QR  form, and thus the entries denoted ijh  are actually entries of 

the triangular matrix, R . 
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There are a number of variants based on GMRES, including flexible GMRES [149], 

simpler GMRES [150], loose GMRES [151], GMRES with Householder 

transformations [152], and the hybrid GMRES*. Flexible GMRES allows a different 

preconditioner to be used at each iteration. Simpler GMRES avoids construction of the 

upper Hessenberg factorisation involved in the GMRES algorithm, but the cost of doing 

so negates the benefit [107]. Loose GMRES (LGMRES) arose from Baker et al.’s [151] 

observation that the restarted residuals in GMRES( m ) were alternating direction in a 

cyclic fashion. They propose an algorithm to identify such a situation and prevent it 

from occurring, leading in some cases to significant savings in iterations, although the 

improvement was not as significant when using preconditioners. GMRES* utilises an 

inner iteration using another iterative solution scheme [153], and is known as GMRESR 

when GMRES is used for both inner and outer iterations. There are also various 

methods that give the same solution approximations at each iteration in exact arithmetic 

as GMRES; these methods include Vinsome’s ORTHOMIN (cited in [107]), Orthodir 

[154] and Axelsson’s method [155]. These methods require more work per iteration and 

are generally less robust than GMRES, although ORTHOMIN can be used effectively 

in a truncated fashion (in which case it is no longer equivalent to GMRES) [107]. 

In general, there is no neat convergence relation for GMRES as there is with CG. 

Specifically, Greenbaum et al. [156] have shown that any non-increasing convergence 

curve is possible for GMRES, and that eigenvalues and the condition number are not 

necessarily indicative of the expected convergence with GMRES. Saad [157] provides 

some methods for relatively good upper bounds on the residual norm for the early 

stages, but they are not as sharp once GMRES (or MINRES) begins superlinear 

convergence. 

2.3.4 Petrov-Galerkin approach 
In seeking short recurrences similar to MINRES and CG but for nonsymmetric A , one 

can construct the biorthogonal bases, V , for (1)( ; )k A v , and W , for (1)( ; )k TA w , 

where the biorthogonality condition requires ,i j ijδ=v w . The biorthogonal sets of 

vectors lead to methods such as Quasi-Minimal Residual (QMR) [158](Freund and 

Nachtigal 1991) and Bi-Conjugate Gradients (BiCG). 
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The Bi-Lanczos method [159] starts from the Lanczos relations ( ) ( 1) ( 1, )k k k k+ +=AV V H . 

Seeking a three-term recursion, multiplying both sides by ( )
T
kV  will not result in a 

tridiagonal ( )kH . Thus, given ( ) ( ) ( )
T
k k k=W V D  for some ( )kW , where ( )kD  is the matrix 

with entries 0ijd ≠  for i j=  and zero otherwise. Multiplying the Lanczos relation with 

TW  from the left now gives 

 ( ) ( ) ( ) ( )
T
k k k k=W AV D H . 

For ( )kH  to be tridiagonal and thus provide the three-term recurrence, ( ) ( )
T T
k kV A W  must 

also be tridiagonal. This form suggests generating the iw  with TA  in much the same 

way as the iv  are generated with A  in the Lanczos process [107]. This leads to ( )kW  

being the set of vectors, iw , biorthogonal to ( )kV , i.e. ,i j ijδ=v w . 

In 1976, Fletcher (cited in [107]) set ( ) ( )( )T
k k− =W b Ax 0 , leading to ( , ) (0)

12

k k =T r e  

and ( ) ( )k k=x V y  for the BiCG method. However, BiCG suffers from highly irregular 

convergence (van der Vorst 2003), which can affect the attainable accuracy [86], and as 

such is not considered further here. The QMR method is discussed below. 

In the above, two breakdowns can occur; iv  or iw  can be set to 0 , or ( ) ( ) 0T
k k =w v  for 

non-zero iv  and iw . The latter is known as a serious breakdown [86]. This serious 

breakdown can be avoided by making successive Krylov subspace basis vectors block-

wise biorthogonal as shown by Freund and Nachtigal in their look-ahead variant of 

QMR [158]. Alternatively, the method can simply be restarted when a small diagonal 

element is identified. However, this method forgets the Krylov subspace basis that has 

been constructed and thus loses the potential for superlinear convergence [107]. 

In BiCG and the iterative methods based on BiCG, the residual vector is updated via a 

relation similar to 

 ( 1) ( ) ( )k k k+ = −r r Aw , 

with the solution estimate being updated in a similar fashion as 

 ( 1) ( ) ( )k k k+ =x x w . 
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The multiplication in the residual update can and does lead to differences between ( )kr

and ( )k−b Ax , which presents a difficulty in testing for convergence with the updated 

residual vector. Because of the importance of ( )kr  in defining T  throughout the 

iterative procedure, replacing the residual vector with ( )k−b Ax  can increase the 

chances for stagnation by ignoring the previous rounding errors [107]. 

2.3.4.1 Quasi-Minimal Residual 
The QMR method [158] is a variant of the BiCG method exhibiting smoother 

convergence and avoids one of the breakdown conditions in BiCG [107]. 

As with the minimal residual approach, the norm of the residual can be rearranged to 

 ( ) ( ) ( 1) ( 1) ( 1, )
12 2 2

k k k k k kρ + + +− = − = −b Ax b AV y V e V H y , 

which, because ( 1)k+V  is no longer orthonormal, gives 

 ( ) ( 1) ( 1, )
12 2 2

k k k kρ+ +≤ −r V e H y . (2.4) 

The second norm on the right-hand side of (2.4) is the norm of the quasi-residual. To 

update ( )kx , a y  is sought to minimise this quasi-residual, resulting in the QMR 

method. 

Although the QMR method does not minimise the true residual, Nachtigal [160] has 

shown that the residual obtained with the QMR method, ( )k
Qr , can be related to the 

GMRES residual, ( )k
Gr , by 

 ( ) ( 1) ( 1, )
12 2 2

k k k k
Q ρ+ +≤ −r V e H y , 

which appears promising, although the condition number of ( 1)k+V  cannot be bounded a 

priori [123]. 

In addition to the original QMR method [158], there exists a variant of QMR based on 

coupled two-term recurrences, avoiding the generally less robust three-term recursions 

[161], a transpose-free QMR method (TFQMR) [162], and the Symmetric QMR 

algorithm [82]. The Symmetric QMR method avoids the need for SPD preconditioners, 

which is well-suited to the needs of solving symmetric indefinite systems. Various 

authors have found the Symmetric QMR method to be the solver of choice for 
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symmetric indefinite problems when the preconditioned CG method cannot be used, 

see, e.g. [163], [164]. 

2.3.5 Minimal norm error approach 
The minimal norm error approach seeks to minimise the norm of the error, 

( ) ( ) *

2 2

k k= −e x x . For T=A A , this approach leads to the Symmetric LQ 

(SYMMLQ) method [145], while for the general case it leads to the Generalised 

Minimal Error (GMERR) method [165]. A brief overview of SYMMLQ is provided 

below. 

2.3.5.1 SYMMLQ 
Paige and Saunders [145] present the SYMMLQ method with MINRES as an 

alternative to CG for indefinite systems, using ( ) ( ) ( )k k k=T L Q  for lower triangular ( )kL  

and orthonormal ( )kQ : 

 

1

2 2

( ) ( ) ( ) 3 3 3
T

k k k

k k k

γ
δ γ
ε δ γ

ε δ γ

 
 
 

= =  
 
 
  

T Q L


. 

This provides short recurrences in a stable factorisation which exists for indefinite A . 

To compute approximate solutions to a linear system, SYMMLQ forces the residual to 

be orthogonal to the Krylov subspace in a similar fashion to CG. Similar to MINRES, 

SYMMLQ requires positive-definite preconditioners but may converge much more 

slowly than MINRES for ill-conditioned systems [107]. 

2.3.6 Hybrid methods 
Hybrid methods combine various components of the approaches discussed above. The 

Stabilised Bi-Conjugate Gradient (Bi-CGSTAB) [107] is one of the more common of 

the hybrid methods and is discussed below. 

2.3.6.1 Stabilised Bi-Conjugate Gradients 
Similar to QMR, the stabilised bi-conjugate gradients (Bi-CGSTAB) method introduced 

by van der Vorst [166] seeks short recurrences for general matrices while exploiting the 

desirable convergence properties of the Conjugate Gradient Squared method (CGS) 
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[167](Sonneveld 1989), but stabilising its erratic behaviour. The Bi-CGSTAB method is 

essentially the combined effect of Bi-CG and GMRES(1). 

CGS is another hybrid method, and relies on the residual vector being a function of the 

polynomial with the Bi-CG residual vector written as ( ) (0)( )k
kP=r A r  and the shadow 

residual ( ) (0)( )k T
kP=r A r  , where the shadow residual results from the iw  components 

of the biorthogonal set. Because of the biorthogonality between the iv  and the iw , 

 ( ) ( ) (0) (0) (0) (0), ( ) , ( ) ( ) ( ) , 0j i T
j i i jP P P P= = =r r A r A r A A r r    

for all i j<  [107]. The shadow residuals can thus be constructed as 

 ( ) 2 (0)( )k
jP=r A r , 

which avoids the computation with TA  [167]. Because of the squared term in 

calculating the residual, CGS can converge more rapidly than Bi-CG. The method 

performs most effectively when A  contains a uniform distribution of eigenvalues over 

some interval not containing the origin, but can, in practical cases, exhibit significantly 

more erratic behaviour than Bi-CG [107]. Fokkema et al. [168] note that the good 

approximation in the direction of eigenvectors associated with the extreme eigenvalues 

when using CGS is well-suited for solving the linear systems arising from Newton’s 

scheme for nonlinear equations. 

However, because of the serious effects of irregular convergence (residual norm varying 

in magnitude in subsequent iterations), a more smoothly converging variant is desirable. 

The Bi-CGSTAB method smooths the convergence by modifying (0)( ) ( )j iP PA A r  to 

 ( ) (0)( ) ( )k
k kQ P=r A A r , 

where kQ  is a polynomial of the form 1 2( ) (1 )(1 )...(1 )i iQ ω ω ω= − − −z z z z  and iω  are 

suitable constants. In Bi-CGSTAB, the kω  are chosen to minimise the residual ( )kr  

[166]. This leads to 

 ( ) ( 1) ( 1)
1( )( )k k k

k kω α− −
−= − −r I A r Ap  

and 
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( ) (0)

1
( ) ( 1)

( )

( )

k
k
k k

k k

T
β ω

−

−

=

= + −

p A r
r I A p

, 

for scalar kα  and kβ , the diagonal and super-diagonal entries of T , respectively. 

Bi-CGSTAB is a finite method, terminating in at most n  steps in exact arithmetic 

[166]. However, the method can suffer the same breakdown conditions as CGS and 

BiCG where some kρ  or ( )T kr v  is zero or essentially so. Implementations of the 

method should check for these occurrences and either restart with a different r  or 

restart with a different solution method [107]. 

Variations on BiCGSTAB have been developed. Sleijpen et al. [169] present various 

methods based on BiCGSTAB( l ), where l  performs the same function as m  in 

GMRES( m ). Zhang [170] presented the generalised product Bi-CG (GPBi-CG) 

method. However, GPBi-CG is based on a three-term recursion which is considered less 

stable numerically then two-term recursions [107]. 

2.4 Preconditioners for iterative linear solvers 
Preconditioners have become the focus of much recent computational science research, 

and constructing methods for transforming a problem that appears intractable into 

another whose solution can be approximated is likely to remain a prominent research 

topic for the foreseeable future [86]. With regards to solving linear systems by the use 

of iterative methods, Chen [171] states that devoting effort to the construction of 

improved preconditioners is likely to yield better results compared with searching for a 

more effective solution method. Although preconditioners have been effective for many 

problems, the preconditioning of ill-conditioned matrices and symmetric indefinite 

matrices is still largely an open problem (see, e.g. [71], [78], [107]). 

Preconditioners generally attempt to improve the condition number of the coefficient 

matrix, while clustering the eigenvalues around one (or at least away from zero). 

Preconditioning can be of the form =MAx Mb  (left preconditioning) or 1− =AMM x b  

(right preconditioning), or mixed preconditioning, 1
L R R L

− =M AM M x M b . The 

preconditioner M  will either seek to replicate A  or its inverse, 1−A . Note that if 

≈M A , then the inverse 1−M  must be used in place of M  in the preceding forms. In 
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the case of ≈M A , M  must be easily invertible (or in a form allowing easy solution as 

in the case of factorisation, e.g. = ≈M LU A  leads to solving =Ax b  as =Lc b , 

=Ux c ). For 1−≈M A , application of the preconditioner yields ≈MA I  (for right 

preconditioning). The common preconditioners can be categorised into the following: 

• Matrix splitting and incomplete factorisation preconditioners. 

• Approximate inverses. 

• Block structured preconditioners. 

• Domain decomposition and multilevel methods. 

There are also more exotic approaches such as support graph or Vaidya-type 

preconditioners [172], [173], and wavelet-based methods [171]. Both of these methods 

have achieved success in preconditioning discretised PDE problems. 

In solving problems with indefinite coefficient matrices, the standard algebraic 

preconditioners of the incomplete factorisations and approximate inverses are often 

found to be less effective than those methods taking into account the block structure of 

the symmetric indefinite and general systems defining the Newton search direction. Part 

of the reason for this is the highly irregular behaviour as the preconditioner becomes 

progressively closer to the “exact” preconditioner. This may be at least partially 

explained by the fact that as the negative eigenvalues of the preconditioned system 

become progressively closer to 1, some of them end up closer to zero than with a more 

sparse approximation resulting in an increase in iterations to convergence [107]. The 

standard algebraic preconditioners do provide ideas for approximating blocks in the 

block structured and constraint preconditioners. Domain decomposition and multilevel 

methods are used primarily for the solution of partial differential equations. Domain 

decomposition splits the domain into subdomains, with each being solved independently 

and the solutions being combined in periodic global solves. Multilevel methods seek to 

use coarse grid approximations to smooth specific components of the error and 

interpolating the solution estimate back to the finer grid. Neither of these methods are 

directly applicable to the problem at hand, although the algebraic multilevel method has 

allowed some of the ideas to be utilised when no explicit grids are present, although the 

method was developed for M-matrices and its performance generally degrades as the 
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coefficient matrix becomes further from an M-matrix. An M-matrix is a symmetric 

positive definite matrix with positive diagonal entries and non-positive off-diagonal 

entries.. It should be noted that the Vaidya-type and support graph preconditioners 

generally outperform incomplete decompositions for Stieltjes and symmetric diagonally 

dominant matrices [173], where a Stieltjes matrix is a symmetric positive-definite 

matrix with non-positive off-diagonal entries. Because of their limited applicability, 

they are not considered further. 

Interestingly, Bocanegra et al. [174] suggest using different preconditioners for different 

stages of the optimisation process. By using different strategies over the course of the 

optimisation process, this allows the utilisation of cheap and efficient preconditioners in 

the early stages where the search direction may not need to be as accurately determined 

as the later stages, for which more computationally-heavy preconditioners may be used 

to achieve greater solution accuracy. 

2.4.1 Matrix splitting and incomplete factorisation preconditioners 
Matrix splitting preconditioners are based on taking some representational part of A  

such as a diagonal band and exploiting it. Such preconditioners can be very cheap to 

construct, require little to no storage, and can be easy to use. Common methods include 

the Jacobi, triangular, banded and banded arrow preconditioners. Similarly, incomplete 

factorisations attempt to approximate the main characteristics of A , but in a more 

efficient form for solving =Ax b . While more complex and expensive than the simpler 

splittings, the incomplete LU  (ILU) factorisation is one of the most popular of the 

standard algebraic preconditioners, and has proved to be a fairly robust preconditioning 

method. A similar preconditioning method is the incomplete QR  factorisation. 

2.4.1.1 Jacobi preconditioner 
The point Jacobi preconditioner consists of only the diagonal entries of A . It is cheap to 

construct, store and implement, assuming the diagonal elements of A  are readily 

accessible. Unfortunately, more sophisticated preconditioners are likely to yield a more 

significant improvement in terms of iterations [120], although for large systems on 

parallel hardware, its simplicity and lack of required communication may give this 

preconditioner an advantage in terms of solve time. The block Jacobi preconditioner 

generalises the point Jacobi idea to include diagonal blocks of A . 
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2.4.1.2 Incomplete decompositions 
Incomplete LU  decompositions [175] were initially used with symmetric non-singular 

matrices with non-positive off-diagonal entries known as M-matrices where their 

existence has been proven [107], but have become a fairly robust form of 

preconditioning for large classes of problems [78]. The family of methods operate much 

the same as a complete factorisation and hence ≈M A , but will not store all non-zero 

entries of the factors. All incomplete decompositions follow some dropping scheme that 

dictates which entries are kept and which are discarded. If the set of entries in the 

incomplete factor is denoted S , then the incomplete decomposition proceeds as follows. 

 ( )

1: , 1: , , 1: ,

2

for 1,
    for 1, 1
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∈
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Early approaches used include dropping any entry that doesn’t occur in the sparsity 

pattern of A  (known as ( )ILU 0 ), or a generalisation of this approach that discards 

non-zeros in the factors based on the level-of-fill (known as ( )ILU l , where l  is the 

level-of-fill parameter). These approaches reportedly work well for some problems 

[171], but may not exist when working with matrices that are not diagonally dominant, 

M-matrices, H-matrices, or Stieltjes matrices. An H-matrix is defined as having a 

comparison matrix that is an M-matrix, where the comparison matrix is formed by 

taking the absolute value of the diagonal entries and the negation of the absolute value 

of the off-diagonal entries. The modified ILU (MILU) adds the discarded entries to the 

diagonal value of U , which, for some problems, meant that some property (e.g. energy) 



68 

 

was conserved [171]. A variant of MILU for grid-based problems adds a constant times 

the square of the mesh size to the entries that is a significant improvement for certain 

problems [107]. 

To improve the robustness of the approach, the factors are computed while dynamically 

choosing a sparsity pattern based on row or column count restrictions and fill 

thresholding, where values below some threshold, τ , are discarded. These two rules are 

combined in the popular incomplete LU  threshold with level-of-fill control (

( )ILUT , pτ ) preconditioner, with inputs p , the maximum number of entries per row in 

the factors, and τ , the value threshold for fill-in [176]. In order to guarantee the 

existence of the decomposition, it is still required that the coefficient matrix be an M-

matrix, Stieltjes matrix, H-matrix, or a generalised diagonally dominant matrix [171], 

although Chow and Saad [177] note that with the use of pivoting, reordering, diagonal 

perturbations and scaling, ILU preconditioning can still be applied relatively 

successfully to indefinite problems. A more recent development in ILU preconditioning 

provides control over the growth of the inverse of the factors [178]. 

An alternative to ILU which works for general nonsingular matrices is the incomplete 

QR  and incomplete LQ  factorisations (ILQ). Bai et al. [179] present an incomplete 

QR  factorisation using incomplete Givens orthogonalisation (IGO), the construction of 

which is more easily parallelised than ILU-type preconditioners. Similar to the 

incomplete LU  decompositions, they present variations, generalised with the GTIGO(

τ , p ) which includes threshold and level-of-fill controls. Saad [180] presents the ILQ 

method based on modified Gram-Schmidt orthogonalisation, showing that the 

application of CG to the normal equations (CGNE) preconditioned with ILQ is a more 

robust method for an indefinite problem than other common methods (the CGNE 

approach sets T=x A y  and solves T =AA y b ). 

2.4.2 Approximate inverses 
Approximate inverse preconditioners seek to replicate the inverse of A , giving ≈MA I

. The two common methods for calculating approximate inverse preconditioners are the 

Sparse Approximate Inverse (SPAI) method, and the Approximate Inverse (AINV) or 

Factorised Sparse Approximate Inverse (FSAI) methods. 
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2.4.2.1 SPAI 
SPAI preconditioners are constructed by minimising −AM I  [171]. Using the 

Frobenius norm naturally decouples the problem into n  least squares problems to solve 

for the column vector jm  

 
2

min
j

j j Fm
−Am e , (2.5) 

with je  the j th unit vector. Solving for 1,2,....,j n=  leads to [ ]1 2, ,..., n=M m m m . 

Gould and Scott [181] tested two different approaches based on this method for 

nonsymmetric matrices, and found that they may not perform as efficiently as other 

popular standard preconditioning techniques when executing serially. SPAI 

preconditioners do provide alternatives for problems which fail using other schemes. 

Note that (2.5) represents one of n  independent problems and, as such, is trivially 

parallelisable. Grote and Huckle [182] developed one of the more effective Frobenius 

norm minimisation methods with their SPAI preconditioner. 

2.4.2.2 AINV and FSAI 
The other popular approximate inverse methods are published under the name AINV for 

the general case [183] and FSAI for a symmetric A  [184]. Both methods construct the 

preconditioner 

 
2

,
min T

F
−

W Z
W AZ I , 

where W  and Z  are upper triangular matrices satisfying level-of-fill and threshold 

controls. Note that for the symmetric case =W Z . Similar to ILU, these 

preconditioners are also subject to breakdown, and sometimes the system is solved for 

the coefficient matrix α+A A  for some scalar α  instead [171]. Benzi and Tůma [183] 

found that AINV was about as effective as ILU(0) for their range of nonsymmetric test 

problems, while the implicit factorisations were generally more robust in large ill-

conditioned systems with entries slowly decaying away from the diagonal [185]. The 

SPAI approach is inherently more parallelisable than the AINV and FSAI techniques, 

but is computationally more expensive [185]. 
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2.4.3 Block structured preconditioners 
Block structured preconditioners are block-diagonal or block-triangular matrices which 

exploit the structure of the KKT system. In this section on block structured 

preconditioning, the 2 2×  block system considered is  

 
T     

=    
    

x pA B
y qB 0

. 

These preconditioners generally require the approximation of A  and the Schur 

complement, 1 T−= −S BA B  (with a zero (2,2)  block as in the KKT system). They are 

generally categorised as either block diagonal or block triangular, both of which are 

discussed below. 

2.4.3.1 Block diagonal preconditioners 
The basic block diagonal preconditioner for the augmented system is 

 
ˆ

ˆ
 

=  
  

A 0
M

0 S
, 

where Â  and Ŝ  are suitable non-singular approximations of A  and S , respectively. 

The explicitly preconditioned matrix is then 

 
1

1

1

ˆ

ˆ

T−
−

−

 
=  

  

I A B
M A

S B 0
. 

Kuznetsov [186] and Murphy et al. [187] show that this preconditioned system has 

three eigenvalues (assuming A  is non-singular); 1  and ( )1
2 1 5± . This means that 

GMRES would take only three iterations to solve the KKT equations. Unfortunately, 

constructing the preconditioned system would be as expensive as directly computing its 

inverse [71]. Hence, an approximation to the Schur complement must be made. Note 

that in computing the search direction in the IPM, no approximation of the inverse of 

the (1,1) block needs to be made as it can be computed for a second-order cone of 

dimension in  in ( )iO n  operations when using NT scaling [57], similarly, the scaling 

matrix for the linear cone is diagonal and so inversion is trivial. 

Phoon et al. [163] generalise the preconditioner to 
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ˆ

ˆα

 
=  

  

A 0
M

0 S
 (2.6) 

where α  is some non-zero scalar (possibly negative), and Ĥ  and Ŝ  are approximations 

of the (1,1)  block and the Schur complement, respectively. They found that the choice 

of α  can have a significant impact on the number of iterations when using a cheap 

approximation to the (1,1)  block, contrary to its theoretical behaviour. The optimal 

choice for α  is 4− , which reduces the number of eigenvalues (without approximating 

the (1,1)  block) to two; 1
2  and 1 . Toh [134] also uses this preconditioner (with 20α = −

) on some large scale (but dense) SDPs using an IPM with the symmetric QMR iterative 

solver, achieving comparable results to some first-order methods thought to be superior 

for large scale SDP problems. Note that their implementation sets ˆ diag( )=A A , and îjs , 

the entries of Ŝ , are calculated as 

 
2

1

ˆ
n

ji
ij

j jj

b
s

a=

= ∑ . 

This generalised Jacobi preconditioner resulted in smaller eigenvalue clusters, where the 

preconditioned system had eigenvalues in the right half-plane only. Such a 

preconditioner appears attractive due to the ease of construction and solution with it. 

2.4.3.2 Block triangular preconditioner 
Upper and lower block triangular preconditioners of the form 

 
ˆ

ˆ

T

U

 
=  

  

A B
M

0 S
 and 

ˆ

ˆL

 
=  

  

A 0
M

B S
 

can be transformed to inverse factors to solve systems of the form =Mv w  as (using 

the upper triangular UM ) 

 
1

1

ˆ
ˆ

T−

−

    
=     −− −    

I 0I BA 0v w
0 I0 I 0 S

, 
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which is only more expensive than the full block-diagonal preconditioner by a 

multiplication with TB  [78]. Setting ˆ diag( )=A A and 1ˆ ˆ T−= −S BA B  is a common and 

effective preconditioner for a diagonally dominant Â  [78]. 

2.4.3.3 Constraint preconditioners 
Constraint or indefinite preconditioners exploit a block structure similar to the 

augmented system being solved. This provides more scope for domain-specific 

knowledge to be incorporated into the preconditioner, and has proven effective for 

solving saddle point systems [71]. In using preconditioners to solve indefinite block-

structured systems, Bergamaschi [188] recommends dealing with the augmented system 

(rather than the normal equations) in order to provide more freedom in the construction 

of the preconditioner, although there are still occasions when the normal equations are 

solved with preconditioners derived from the augmented system. However, using the 

exact constraint preconditioner may still be computationally expensive, which leads to 

the idea of inexact constraint preconditioning. Consequently, a number of authors have 

focussed on inexact constraint preconditioners of the form 

 
ˆ
T

 
=  

 

A BM
B 0

, 

where Â  is again some approximation to A , for mixed finite element schemes, and 

linear and nonlinear optimisation (see, e.g. [129], [188]–[192]). Rozložník and 

Simoncini [193] and Haws and Meyer [190] approximate the (1,1) block with the 

identity matrix, although in solving the KKT systems, approximating A  with the 

identity matrix is often not sufficiently effective [131], [164], [194]–[196]. Instead, A  

may be approximated using AINV or an incomplete Cholesky factorisation. AINV 

provides the inverse factors of the approximation, 1 1T
A A

− − −≈L L A , allowing relatively 

cheap solves, while the incomplete Cholesky provides an approximation to the factors 
T

A A ≈L L A . Using AINV, the Schur complement is then approximated by taking the 

incomplete Cholesky decomposition T T T
S S= ≈S BZZ B L L  (the matrix Z  here arises in 

the AINV computation described above). The inverse of the preconditioner can then be 

formed as 
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1 1

1
1 1 1

T T T T
S

T T
S S A S

A A A A

A

− − − − −
−

− − − − −

   −
=    −   

L L L B L L 0
M

0 L L BL L L
, 

an upper and lower triangular matrix. This method was found to be more robust than 

ILU and diagonal scaling (using the diagonal of the preconditioner of (2.6) by Phoon et 

al. [163]) [164], [196]. 

Bergamaschi et al. [131] extended the inexact constraint preconditioning scheme and 

mitigated the effects of memory-intensive inverses. They noted that anything more 

simple than a diagonal matrix to approximate A  will be ineffective, and looked for 

ways to approximate the off-diagonal blocks B  and its transpose, as B̂  and ˆ TB , 

respectively, where B̂  has full row rank. B̂  is defined through the splitting ˆ = −B B E , 

where the entries of E  are defined as 

 
if  and 

0 otherwise
ij ij j b

ij

b b i j n
e

τ < − <= 


b
, 

where τ  is a drop tolerance, bn  is a band size, and jb  is the j th column of B . 

Dollar et al. [197] organised a number of these efforts into a framework, and showed 

that using some of them, the projected form of the augmented system may be solved 

with the preconditioned CG (PCG) method. Essentially, by implementing a non-

standard inner product in the PCG algorithm, one can solve systems with an indefinite 

coefficient matrix. For this to succeed, the preconditioner must be nonsingular, and an 

additional preconditioning matrix, P , is SPD, such that 1−PM A  is symmetric and 

positive definite. This means that 1−M A  is positive definite in the inner product ,
P

  . 

Thus, the saddle point system can be solved using CG to solve the equivalent, but SPD, 

system 

 1 1− −=PM Ax PM b . 

The preconditioner 1−PM  is defined as 

 
T T

σ
   

+    
   

A B D F
I

B 0 F E
, 
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where σ  is a scalar, and matrices D , F , and E  match the dimensions of the 

corresponding matrices A , B  and the 0  block, respectively. This preconditioner 

provides the framework for solving the system through a number of common forms (see 

Reference [197] and the references therein for details). Note that an efficient 

implementation would not require 1−PM A  and 1−PM b  to be explicitly formed. Instead, 

an alternative implementation of the CG method is suggested, which, for suitable 

choices M  and P , will outperform the traditional algorithm [197]. 

Rozložník and Simoncini [193] use the simpler preconditioner 

 
T 

=  
 

I B
M

B 0
. 

By using the convenient form of the Cholesky-like factorisation of the preconditioner 
1 1 1 T− − − −=M L D L , it is easy to solve the systems =Mv w  using only matrix-vector 

products. Note that the inverse has only blocks of I , B , TB , and 1( )T −BB . 

Preconditioning the augmented system with it allows the CG method to be utilised, 

although scaling A  is necessary in many cases to avoid non-convergence. 

2.4.3.4 Analytic inverse 
The analytic inverse of the KKT matrix is 

 
1 1 1 1 1 1

1 1 1

T T− − − − − −

− − −

 −
 − 

A A B S BA A B S
S BA S

. (2.7) 

Note that using this form to solve with a given right-hand side is equivalent to using the 

block TLDL  and the block LU  factorisation. The steps in solving with the 

approximated block factorisation 
1

ˆ
ˆ ˆ

T

−

  
=   

−    

I 0 A B
LU

BA I 0 S
 leads to an efficient way 

to solve a system using the analytic inverse: 

 

( )

ˆ1. Solve 
ˆ2. Solve 
ˆ3. Solve T

=

= −

= −

Az p

Sy Bz q

Ax p B y

.  
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Note that this is nothing more than the procedure one goes through when solving the 

Schur complement equation instead of the augmented equations. Compared with the 

block-diagonal Schur preconditioner, this approach requires two more matrix-vector 

products and two vector updates. 

2.4.3.5 Augmented preconditioner 
Golub and Greif [198] focus on an approach to make the augmented equations easier to 

solve; the augmented Lagrangian approach. This system is the same as that used in the 

augmented Lagrangian Uzawa method, where the second equation is multiplied by BW  

and added to the first equation, where W  is an n n×  matrix (and n  is the number of 

columns in B ). This gives 

 
ˆ T T  +   +

=    
    

x p BWqA B WB B
y qB 0

 (2.8) 

Depending on the choice of W , (2.8) may be easier to solve, even when A  is singular 

or severely ill-conditioned. Furthermore, T+A B WB  may even be positive-definite or 

possess a small condition number (Golub and Greif 2003). Choosing γ=W I , where γ  

is a scalar constant, requires a choice for γ . Based on experimental evidence, Golub 

and Greif [198] found performance was dependent upon the choice of γ , and suggested 

2/γ = A B  based on empirical evidence as it may result in a significant difference in 

the spectrum and condition number compared with the original (1,1)  block. 

The augmented block preconditioner of Rees and Grief [199], originally intended for 

solving LPs and QPs with IPMs, is of the form  

 
1T Tk− +

 
 

A B W B B
0 W

, 

for positive-definite W  and scalar k . This preconditioner has the benefit of becoming 

increasingly effective as the optimization method approaches an optimal point. In order 

to maintain a norm of the augmenting term that is comparable to the (1,1)  block, Rees 

and Greif [199] suggest that for quadratic programs the augmenting term is multiplied 

by the norm of the (2,1)  block squared over the norm of the (1,1)  block. This 

preconditioner unfortunately does not, in general, perform very well in the earlier steps 
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of the interior point method. Instead, a more effective preconditioner, such as a 

constraint preconditioner, could be used until its effectiveness becomes beneficial (i.e. 

the spectrum of the preconditioned matrix approaches two distinct values, for which an 

optimal solution method such as MINRES will converge in just two iterations).The 

extended preconditioner of Zeng and Li [200] is 

 ( )1 1T Tη ηε
ε

− + −
 
 

A B W B B
0 W

, 

for scalars ε  and η . They recommend setting =W I  and 1ε η−= −  to minimise the 

number of distinct eigenvalues. 

The challenge with these preconditioner forms is solving systems with the n n×  ( )1,1  

block, which is often significantly larger in dimension and has more non-zeros than the 

Schur complement.  

2.4.3.6 Reduced augmented equations 
This approach is specific to the augmented equations defining the search direction in the 

IPM for conic optimisation, (1.35), and reverts to using the coefficient matrix of the 

augmented equations with the generic unknown and right-hand side vectors, giving 

 
2 T −    

=    
    

x pF A
y qA 0

, 

except where noted otherwise. 

In the IPM, as µ  approaches zero, the eigenvalues of the (1,1) matrix in the augmented 

equations ( 2F , where F  is the Nesterov-Todd scaling matrix for SOCP and SDP) split 

into three major groups. These groups are ( )O µ , (1)O  and (1 / )O µ . This means the 

spectral condition number is 2(1 / )O µ , and explains the significant increase in inner 

iterations required by iterative solvers to compute the search direction as the duality gap 

is reduced. 

To combat the growth in the condition number of the NT scaling matrix, Cai and Toh 

[76] and Toh [134] form an eigendecomposition of the (1,1) block and address the ill-

conditioning directly for SOCP and SDP. The approach is also applicable to LPs [201]. 
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As the interior point method process approaches an optimal solution, the linear systems 

determining the search direction becoming increasingly ill-conditioned. This is of 

concern for direct solution methods as the equations get closer and closer to a singular 

system, which affects the solution accuracy and thus the optimality of the overall 

solution. For iterative solution methods, the ill-conditioning adversely impacts the 

convergence behaviour. Toh [134], Cai and Toh [76], and Chai and Toh [201] attempt 

to solve the first issue through a reduced augmented equation approach that takes into 

consideration the spectrum of the augmented equations in IPMs for SDP, SOCP, and 

LP, respectively, thus allowing the search direction to be calculated more accurately. 

This approach is similar to that of Freund et al.’s [125] for LP, in which the primal and 

dual unknowns are reordered at each iteration, and then some are eliminated leading to a 

reduced but more stable form of the augmented equations in order to ensure that none of 

the values ( )O µ  in the diagonal ( )1,1  block are inverted. 

If at the kth iteration of the IPM, the residual vector resulting from the solution of the 

Schur complement equation, (1.39), is ξ  and the primal step is computed exactly, then 

the primal infeasibility after the step is taken for some [ ]0,1α ∈  is 

( ) ( ) ( )1 1k k
p pα αξ+ = − +r r . This shows that the accuracy attained in solving the Schur 

complement equation affects the primal feasibility. This leads directly to a deterioration 

of the primal infeasibility as the optimal solution is approached in some problems, even 

when direct solvers are used. 

Using the eigenvalue decomposition of the NT scaling matrix, Cai and Toh [76] suggest 

forming what they call the reduced augmented equations (RAE). By partitioning the 

eigenvalues of 2F  into a group of smaller eigenvalues, 1D , and a group of larger 

eigenvalues, 2D , where the partition is stored in the permutation matrix P  such that 

( )1 2diag , T=D D PΛP  and partitioning the columns of the eigenvector matrix as 

[ ]1 2
T =VP V V  to match, one arrives at the partitioned augmented equations 

 
1 1 1 1

2 2 2 2

1 2

T T T

T T T

    −
    − =    
         

D 0 V A V x V p
0 D V A V x V p

AV AV 0 y q
, 
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where p  and q  are the appropriate right-hand side being solved for. It is the inversion 

of the small entries (eigenvalues) in 1D  that lead to the ill-conditioning in the Schur 

complement, and so Cai and Toh [76] suggest using a positive definite diagonal matrix 

1E , setting 1 1 1= +S D E , eliminating 2
T

xV d , then adding the first block row multiplied 

by 1 2
1 1

−AV S  to the third block row, and scaling the first block row by 1 2
1
−S , giving the 

reduced augmented matrix 

 
( )

( )

1 1 2
1 1 1 1

1 2 1 1
1 1 1 2diag ,

T

T T

− −

− − −

 −
 
 
 

D E AV S

AV S AV S D V A
. 

They then show that, under a suitable partition of the eigenvalues, the reduced 

augmented matrix has a condition number bounded independently of the normalised 

complementarity gap, µ  [76]. Similar to the augmented Lagrangian-style approaches, 

the challenge of using this better conditioned system lies in solving a Schur-

complement-like system that has more non-zeros than the standard Schur complement, 

along with both of the diagonal blocks being non-zero. 

2.4.4 Matrix permutation and ordering 
The use of ordering algorithms, traditionally utilised in direct solution schemes, have 

achieved mixed results in the literature. Improvement in the convergence of ILU-

preconditioned Krylov projection methods can be achieved through the permutation of 

the coefficient matrix, effectively renumbering the nodes [78]. Interestingly, the more 

sophisticated orderings such as minimum degree fill (MD) and nested dissection (ND) 

often have not performed as well as bandwidth-reducing orderings such as the reverse 

Cuthill-McKee (RCM) [78] and that of Sloan [202], although as the accuracy of 

incomplete factorisation approaches that of the direct factorisation, the more 

sophisticated ordering will begin to provide benefit. A theoretical reason for the 

improved performance of the RCM ordering for incomplete factorisations was provided 

by Bridson and Tang [203], who showed that the inverse of the incomplete factorisation 

under a RCM ordering is fully dense, while this is not necessarily true for the other 

orderings considered. In contrast, MD and ND orderings have been found to improve 

the quality of the approximate inverse preconditioners, and thus the rate of convergence 

of the approximate inverse preconditioned Krylov projection methods [204].
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Chapter 3 Performance of conventional 
approaches on some FELA problems 

3.1 Test problems 
Test problems in both two and three dimensions to compare various approaches for 

solving the linear systems that arise when computing the search direction at each step of 

the interior point method are introduced here. The purpose of the problem test set is to 

provide a realistic indication of how the method should perform when it is applied to 

solve a broad spectrum of FELA problems in geotechnics. In two dimensions, a strip-

footing on frictional material and a tunnel heading in purely cohesive material are 

considered. A square footing on purely cohesive material, a square excavation in 

cohesive-frictional material, and a tunnel heading in purely cohesive material are 

considered in three dimensions. A brief description of each of the test problems is 

included below, with a diagram of the coarsest mesh used for each problem and a 

summary detailing the pertinent characteristics of each of the associated optimisation 

problems. Details of the hand calculated lower and upper bounds for the strip footing 

are included as a comparison to the more general capability of FELA. 

3.1.1 Two-dimensional problems 

3.1.1.1 Strip footing 
We consider a long strip footing of width 2B that rests on a semi-infinite domain of 

frictional weightless material. For the simulations here, the Mohr-Coulomb soil is 

assumed to have a cohesion of 1kPa and a friction angle of 20 , with bounds on the 

solution which are within 0.5%. The problem is shown in Figure 7 and the mesh in 

Figure 8. Note that the problem symmetry has been exploited. 

 

 
Figure 7. Strip footing. 
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Figure 8. Two-dimensional footing mesh. 

The bearing capacity of such a footing is often determined by hand calculation with  

 22 2 2D C qQ BcN BqN B Nγγ= + + , 

where c  is the soil cohesion, q  is the surcharge per unit area on the soil surface, γ  is 

the unit weight of the soil, and cN , qN  and Nγ  are bearing capacity factors [35]. With 

0qγ = =  and 1B c= =  , this problem results in calculation of the factor cN . A 

comparison of the bounds computed for cN  as φ  varies is shown in Figure 9, along 

with closed solutions due to Prandtl [228] and Terzaghi [35]. As can be seen, the FELA 

bounds are very tight and in good agreement with the exact values. 

 
Figure 9. The bearing capacity factor Nc as ϕ varies. 
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The mesh used here is the coarsest of the three meshes considered. The Terzaghi [35] 

value is given by 

 
2

2
cot 1

2cos
4 2

c
aN θφ

π φ

 
 

=  − 
  +    

 and 
3 tan
4 2a e

φπ φ

θ

 − 
 = . 

For the perfectly frictionless base [228] 

 tan 2cot e tan 1
4 2cN π φ π φφ   = + −    

. 

 
Figure 10. Prandtl failure mechanism. 

This value can be derived as an upper bound from the Hill and Prandtl failure 

mechanisms [3]. The Prandtl failure mechanism is shown in Figure 10. The same value 

may also be derived as a lower bound by considering an infinite number of 

symmetrically inclined column stress states superposed (with a corresponding 

horizontal stress to satisfy equilibrium) [3]. A three column version of a statically 

admissible stress state is shown in Figure 11. 

 
Figure 11. Three column lower bound stress state for strip footing. 
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3.1.1.2 Circular tunnel in cohesive material 
The stability of a tunnel heading has received attention from a number of authors, with 

solutions being obtained by computing lower bounds by hand [229], upper bounds via 

rigid blocks [229]–[232], and both lower and upper bounds using FELA with varying 

solution schemes and degrees of problem complexity [4], [230], [232], [233]. Figure 12 

shows a cross-section of a circular tunnel, of infinite length, embedded in a semi-infinite 

domain of Mohr-Coulomb material. The unit weight of the soil γ  is assumed to be 0.5

kN/m3, the cohesion is 1.0 kPa, the friction angle is 0 , and the bounds computed to 

within 1.5% of each other. Note that the actual values of c and γ are not critical, since 

the bound solutions are presented in dimensionless form. The mesh used for the 

problem is shown in Figure 13. 

 
Figure 12. Plane strain tunnel problem.  

3.1.2 Three-dimensional problems 
The three-dimensional set of problems considered here is designed to provide a realistic 

test of the performance of the limit analysis solvers for large-scale problems. The 

connectivity of three-dimensional problems is significantly greater than that for two-

dimensional problems, and has been known to cause issues for many interior point 

solvers. For the square footing and square excavation, both constant strain and linear 

strain elements can be used in the formulation of the upper bound problem. The latter 

formulations (post-fixed *UB2) do not require inter-element discontinuities to achieve 

good quality bounds, and result in a smaller but more dense constraint matrix [234]. The 

problems all use the Drucker-Prager yield criterion, with cohesion, friction angle, the 
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Lode angle (which is used to change the points at which the Drucker-Prager yield 

surface matches the Mohr-Coulomb yield surface), and the unit weight of the soil. 

 

 
Figure 13. Two-dimensional tunnel mesh. 

3.1.2.1 Square excavation in cohesive-frictional material 
The square excavation problem optimises the unit weight of the material to obtaining 

the stability number /H cγ . While just one eighth of the problem could be used to 

model the problem by exploiting symmetry, one quarter of the problem has been 

modelled here to increase the three dimensional connectivity of the problem (as shown 

in Figure 14). The mesh for this case is shown in Figure 15. There has been little 

attention given to this problem in the literature, although there has been much work that 
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has focused on axisymmetric excavation problems [235], [236]. The parameters used in 

the simulations were 1kPac = , 1φ =  , 25θ =  , and 1γ = . 

 
Figure 14. Square excavation. 

 
Figure 15. Three-dimensional square excavation mesh. 

3.1.2.2 Square footing on weightless cohesive material 
The square footing may be considered a special case of the rectangular footing with its 

breadth B  equal to its length L . The problem is similar to that of the strip footing in 

two dimensions, so that the exact solution for the strip footing is also a lower bound for 

the square footing [3]. The test problem used has a cohesion of 1kPa, φ = 0° , 25θ =  , 

and is weightless. The problem is shown in Figure 16 and the mesh in Figure 17. 
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Figure 16. Square footing. 

Bounds on the limit loads of rectangular and circular footings have been formulated by 

Shield and Drucker [237] with an upper bound for a rectangular footing of 

 5.24 0.47u
Bq c
L

 = + 
 

 

for a weightless cohesive material. For a square footing B L=  and an upper bound is 

simply 5.71uq c= . Since the exact bearing capacity for a strip footing is 

(2 ) 5.14uq c cπ= + ≈ , this serves as a rigorous lower bound for the square footing. This 

can be compared with the best lower and upper bounds computed by FELA here of, 

respectively, 5.63uq c= and 5.95uq c=  (a gap of over 5%). Relative to two-

dimensional problems, it is much more difficult to achieve tight bounds on the solution 

in three dimensions due to the rapid growth in computational burden as the mesh is 

refined. 

3.1.2.3 Tunnel heading in cohesive-frictional material 
The three-dimensional tunnel heading problem has not received as much attention in the 

numerical analysis literature as the two-dimensional case (see [238] and references 

therein). This is due to the added complexity introduced by its three-dimensional nature 

and the commensurate computational demands that are required to analyse its 

behaviour. Moreover, the plane strain case considered above provides a conservative 

estimate of the collapse load [4]. A longitudinal section through the problem considered 

is shown in Figure 18 with the mesh in Figure 19. The soil parameters used in the 

simulations were 1kPac = , 10φ =  , 25θ =  , and 0.5γ = . The tunnel heading has a 

cover of 4H = , a diameter 2D =  and a length of 6. This problem is demonstrably 

harder to solve, and the gap between the bounds was greater than 30%. 
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Figure 17. Three-dimensional square footing mesh. 

 

  
 

Figure 18. Section through the three-dimensional tunnel heading. 
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Figure 19. Three-dimensional tunnel heading mesh. 

3.1.3 Problem summary 
Table 1 and Table 2 present the two- and three-dimensional test problems used to 

evaluate optimisation solver performance, respectively. The tables provide the 

following information: 

Problem – the name of the problem; 

Velocity – the number of velocity nodes in the FELA mesh; 

Stress – the number of stress nodes in the FELA mesh; 

nF – the number of free variables in the optimisation problem formulation; 

nSOC – the number of variables involved in a second-order conic constraint in the 

optimisation problem formulation; 

nk – the number of second-order conic inequalities in the optimisation problem 

formulation; 

m – the number of rows in the constraint matrix in the optimisation problem formulation 

(and hence the number of constraints in the problem); 

n – the number of columns in the constraint matrix in the optimisation problem 

formulation (and hence the number of unknowns in the problem); and 
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nnz(A) – the number of non-zeros in the constraint matrix in the optimisation problem 

formulation. 

Table 1. Two-dimensional problem summary. 

Problem Elements Velocity Stress nF nSOC nk m n nnz(A) 
2DfootingLBS 232,330 232,330 174,510 280 523,530 174,510 465,360 523,810 2,960,442 
2DfootingLBM 524,895 524,895 394,065 420 1,182,195 394,065 1,050,840 1,182,615 6,694,380 
2DfootingLBL 935,060 935,060 701,820 560 2,105,460 701,820 1,871,520 2,106,020 11,922,120 
2DfootingUBS 232,330 174,510 232,330 980 696,990 232,330 349,020 697,970 2,960,442 
2DfootingUBM 524,895 394,065 524,895 1,470 1,574,685 524,895 788,130 1,576,155 6,694,380 
2DfootingUBL 935,060 701,820 935,060 1,960 2,805,180 935,060 1,403,640 2,807,140 11,922,120 
2DtunnelLBS 76,480 76,480 57,600 58,080 172,800 57,600 211,799 230,880 1,092,936 
2DtunnelLBM 172,320 172,320 129,600 130,320 388,800 129,600 476,099 519,120 2,460,206 
2DtunnelLBL 306,560 306,560 230,400 231,360 691,200 230,400 845,999 922,560 4,374,676 
2DtunnelUBS 76,480 57,600 76,480 77,480 229,440 76,480 192,159 306,920 1,110,556 
2DtunnelUBM 172,320 129,600 172,320 173,820 516,960 172,320 432,239 690,780 2,501,036 
2DtunnelUBL 306,560 230,400 306,560 308,560 919,680 306,560 768,319 1,228,240 4,448,316 

 

Table 2. Three-dimensional problem summary. 

Problem Elements Velocity Stress nF nSOC nk m n nnz(A) 
3DsqrexcLBS 41,472 41,472 24,576 43,008 147,456 24,576 164,355 190,464 964,142 
3DsqrexcLBM 141,696 141,696 82,944 145,152 497,664 82,944 554,048 642,816 3,271,166 
3DsqrexcLBL 265,632 265,632 155,136 271,488 930,816 155,136 1,034,703 1,202,304 6,123,526 
3DsqrexcUBS 41,472 24,576 41,472 119,280 248,832 41,472 188,927 368,112 1,170,302 
3DsqrexcUBM 141,696 82,944 141,696 399,708 850,176 141,696 639,359 1,249,884 3,982,174 
3DsqrexcUBL 337,920 196,608 337,920 944,064 2,027,520 337,920 1,517,567 2,971,584 9,477,630 
3DsqrexcUB2S 6,144 9,769 24,576 56,726 147,456 24,576 83,189 204,182 2,826,051 
3DsqrexcUB2M 20,736 31,741 82,944 184,470 497,664 82,944 273,389 682,134 9,551,771 
3DsqrexcUB2L 57,600 87,113 230,400 503,750 1,382,400 230,400 753,077 1,886,150 26,573,448 
3DsqrfootLBS 43,956 43,956 25,920 26,244 155,520 25,920 153,648 181,764 932,326 
3DsqrfootLBM 105,024 105,024 61,440 62,016 368,640 61,440 363,904 430,656 2,215,008 
3DsqrfootLBL 357,264 357,264 207,360 208,656 1,244,160 207,360 1,227,168 1,452,816 7,493,136 
3DsqrfootUBS 43,956 25,920 43,956 48,492 263,736 43,956 121,932 312,228 998,460 
3DsqrfootUBM 105,024 61,440 105,024 113,088 630,144 105,024 289,728 743,232 2,377,408 
3DsqrfootUBL 357,264 207,360 357,264 375,408 2,143,584 357,264 980,208 2,518,992 8,059,824 
3DsqrfootUB2S 6,480 10,153 25,920 29,094 155,520 25,920 56,549 184,614 2,862,860 
3DsqrfootUB2M 15,360 23,473 61,440 67,014 368,640 61,440 132,149 435,654 6,792,354 
3DsqrfootUB2L 51,840 77,257 207,360 219,750 1,244,160 207,360 439,757 1,463,910 22,945,686 
3DtunheadLBS 67,788 67,788 40,032 42,300 240,192 40,032 246,167 282,492 1,829,646 
3DtunheadLBM 163,472 163,472 95,744 99,920 574,464 95,744 587,983 674,384 4,399,198 
3DtunheadLBL 561,240 561,240 326,016 335,736 1,956,096 326,016 1,998,455 2,291,832 15,051,585 
3DtunheadUBS 67,788 40,032 67,788 77,400 406,728 67,788 190,151 484,128 1,916,456 
3DtunheadUBM 163,472 95,744 163,472 180,848 980,832 163,472 454,879 1,161,680 4,611,356 
3DtunheadUBL 561,240 326,016 561,240 600,984 3,367,440 561,240 1,549,007 3,968,424 15,794,780 

 

3.2 Compared solvers 
The following software packages are all able to solve semidefinite-quadratic-linear 

programs (SQLP), interface to MATLAB, and are widely available. In all cases, except 

where noted otherwise, the default settings were used for the comparison. The relative 
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complementarity gap, and the primal and dual infeasibility tolerances, were by default 

set to 810− . All the packages reported here implement infeasible primal-dual IPMs, 

although there are significant variations in the methods beyond such a categorisation. 

3.2.1 MOSEK 
MOSEK [57] was designed to solve large-scale problems via a predictor-corrector interior 

point method, and incorporates sophisticated pre-solve and parallel processing. It is also 

based on the simplified homogeneous and self-dual (HSD) model with NT scaling. In 

computing the search direction, MOSEK uses a left-looking supernodal Cholesky 

factorisation and uses a graph-partition ordering for the results reported here. The latest 

version can also solve SDPs as well as LPs, SOCPs, QPs, and general convex NLPs. It 

also has mixed integer methods and simplex-based procedures, but these are of no use 

for FELA. MOSEK is able to run in parallel, although it is not recommended for problems 

that can be solved in under 60 seconds. As part of the presolve phase, MOSEK includes a 

linear dependency checker to ensure the full row rank of the constraint matrix. For the 

large problems considered in this Thesis, this will dominate both time and storage, and 

so is not performed. Another part of the presolve phase, the eliminator, is used to check 

whether it is possible and likely to be beneficial to remove any linear or free variables 

before solving the problem with the IPM. Free variables are embedded in a second-

order cone. 

3.2.2 Gurobi 
Gurobi is another commercial optimisation package, and provides similar functionality 

to MOSEK. For solving the FELA problems here, Gurobi has an IPM designed to solve 

LPs and SOCPs. Few details of the solver implementation are readily available, other 

than it being a primal-dual barrier-based method with a sophisticated presolve. The 

default is the standard barrier method, with the option to use a HSD embedding to solve 

the problem being recommended only if the problem appears to be infeasible or if 

numerical difficulties are encountered. By default, Gurobi automatically chooses 

between a nested dissection and AMD ordering. 

3.2.3 SDPT3 4.0 
SDPT3 (version 4.0) [70], [81] now contains both a three-term HSD (not the simplified 

HSD) method (termed SDPT3HSD herein) and a primal-dual infeasible-interior point 
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predictor-corrector algorithm (termed SDPT3SQL herein). By default, it uses NT scaling 

for second-order cone variables. There is no central path neighbourhood enforcement 

used in the SQLP solver of SDPT3. The Schur complement is factorised using the 

standard MATLAB [103] Cholesky decomposition, the left-looking supernodal CHOLMOD 

[102], with an approximate minimum degree (AMD) ordering. It should be noted that 

the ordering is not handled explicitly in SDPT3, relying on MATLAB to do so each time the 

system is factorised. The decomposition is then used to precondition a symmetric quasi-

minimal residual iterative solver implementation [82]. Unfortunately, the supernodal 

factors constructed by CHOLMOD are destroyed when the factors are returned in MATLAB, 

so the supernodes are not able to be exploited in the Krylov solver preconditioning 

operation. Free variables are addressed with the addition of slack variables and then 

treating the free variables as the difference between the two linear variables. 

3.2.4 SeDuMi 1.31 
SeDuMi [58] implements a primal-dual interior point algorithm using a simplified HSD 

embedding technique. The search direction at each iteration is obtained through a 

supernodal-based TLDL  factorisation with a multiple minimum degree ordering. If the 

decomposition does not yield an answer with sufficient accuracy, the decomposition is 

used as a preconditioner for the conjugate gradient (CG) method [80]. Free variables are 

embedded in a second-order cone. 

3.2.5 Mix8 
Mix8 is a standalone FELA package developed at the University of Newcastle. The IPM 

is based on a simplified HSD scheme and uses NT scaling with Mehrotra’s predictor 

corrector method for the search direction based on the extension to SOCP described by 

Andersen et al. [57]. HSL MA57 [79] is used to build a TLDL  decomposition of the 

Schur complement equation with the multifrontal method using the HSL MC50 

implementation of AMD for the ordering. Different step lengths in the primal and dual 

variables are not allowed. Free variables are embedded in a second-order cone of 

dimension 2  for numerical stability. 
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3.3 Comparison results 
The solvers described in the previous section were used to solve the set of test problems 

presented in Section 3.1. The simulations were all run using a single thread on an Apple 

MacBook Pro with an Intel Core i7-3740QM 2.70GHz CPU with 16.0GB RAM 

running Windows 7 (64 bit) and MATLAB R2012b. Mix8 was compiled using the Intel 

Fortran Composer XE 2013, with the Intel MKL BLAS routines used where suitable. 

The results are discussed below. 

For each analysis, a range of values were recorded in order to compare the performance 

of the various solver packages. For each problem, the following values were recorded: 

nit – the number of IPM iterations; 

tT – the total time taken to solve the problem in seconds; 

tP – the time spent in the presolve phase in seconds (‘-’ denotes that the solver does not 

use a presolve phase); 

tO – the time taken for the ordering method in seconds (as noted above, SDPT3 does not 

explicitly use an ordering, but relies on MATLAB’s internal chol function to perform the 

ordering before factorising the matrix, and, for Mix8, the analysis phase for MA57 which 

incorporates the MC50 ordering is displayed); 

pobj – the final primal objective value reported by the solver; 

pfeas – the final primal infeasibility reported by the solver; 

dfeas – the final dual infeasibility reported by the solver; 

gap – the final normalised complementarity gap reported by the solver; 

m – the number of rows in the constraint matrix A  as reported by the solver after any 

presolving is completed (and hence the number of constraints in the problem); 

n – the number of columns in the constraint matrix A  as reported by the solver after 

any presolving is completed (and hence the number of variables in the problem); 

nnz(A) – the number of non-zeros in the constraint matrix A  as reported by the solver 

after any presolving or free variable conversion is completed; and 
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nnz(L) – the number of non-zero values in the factorisation determining the search 

direction at each iteration of the IPM. The number of non-zeros in SDPT3’s 

factorisations vary from iteration to iteration, probably due to the use of random 

numbers within the AMD ordering performed before each factorisation. Thus, nnz(L) 

reported here for the SDPT3 solvers is the maximum number of non-zeros present in the 

factors over the duration of the IPM, although the differences are usually negligible. 

3.3.1 Smaller problems 
The coarsest mesh problems (those problems in Table 1 and Table 2 with an ‘S’ at the 

end of the problem name) were analysed using all of the solvers described in the 

previous section. These “smaller” problems are not small by modern standards with 

roughly 100,000 to 500,000 variables, but do not prove to be a serious computational 

burden for the better solvers with solution times generally less than 90 seconds. A 

column chart of the total runtime for the problems in the small test set is shown in 

Figure 20 and a summary of the results for the coarse mesh problems is provided in 

Table 3. See above for a description of the values displayed.  

 

Figure 20. Comparison of the total solution time of the small problem set between all 
available solvers.Note that two of the SeDuMi values have been cut off (the values are 

available in Table 3) and simulations that did not successfully converge have been 
removed from the chart. 

Considering Figure 20, it is obvious that there is a large difference between the runtime 

performance of the solvers considered and that the four two-dimensional problems take, 

in general, less time to solve than the eight three-dimensional problems. As can be seen 
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in the figure and Table 3, SeDuMi exhibits rather unpredictable behaviour compared to 

its open-source rivals SDPT3. SeDuMi was over twice as fast as the HSD variant on the 

quadratic formulation of the upper bound for the square footing and the upper bound of 

the two-dimensional tunnel problem, but taking twice as long on, for example, the 

quadratic formulation of the square excavation upper bound. More concerning is 

SeDuMi’s difficulty in achieving primal feasibility, and thus convergence, in all of the 

lower bound problems except the square footing. SeDuMi also fails to converge on the 

upper bounds for the square footing and the tunnel heading and was the only solver that 

had severe numerical difficulties on more than one of the problems. In comparison to 

the better solvers, SeDuMi close to an order of magnitude slower than MOSEK for the 

majority of the coarse mesh problems. Note that while SeDuMi embeds all of the free 

variables into a single second order cone by default, splitting the free variables (that is, 

using a slack variable to convert the free variable into the difference of two linear 

variables) does not provide any net performance gain. Because of the poor performance 

exhibited on these smaller problems, SeDuMi was not used to analyse the larger 

problems in the test set. 

SDPT3SQL was, on average, over 50% faster than its HSD counterpart, SDPT3HSD and 

was slower only on the upper bound for the tunnel heading, which is the only problem 

where the HSD formulation completed in fewer iterations. While this is partially due to 

the increased work required to solve the HSD formulation at each IPM iteration as 

compared with the standard approach apparent both theoretically and in the time per 

iteration, such a discrepancy between the methods is an unexpected observation. 

Interestingly, SDPT3SQL was the only solver to achieve full convergence on 

3DtunheadLBS, with Mix8 failing totally, SeDuMi stopping prematurely, and the two 

commercial solvers along with SDPT3HSD failing to achieve primal feasibility, although 

SDPT3HSD did make more progress than MOSEK and Gurobi. In general, though, the 

MATLAB-based solvers were slower than the standalone and commercial solvers. 

Of these standalone solvers, it is clear that MOSEK exhibits a comparatively higher level 

of performance in terms of total runtime, beating the other commercial solver, Gurobi, 

by a factor of two or more in most of the problems. It was also the most consistent, 

solving each of the problems to the required accuracy in less than 26 iterations. It 
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should be noted, however, that MOSEK converged to a slightly different solution 

compared with all of the other solvers for problems 2DtunnelLBS and 2DtunnelUBS. 

This discrepancy could be a result of rounding errors as a result of scaling the 

coefficient matrix, but most likely it is caused by the significant elimination of 

constraints and variables in the presolve phase, and the removal of constraints identified 

as redundant. For both of these problems (as well as 2DfootingLBS and some of the 

three-dimensional problems), MOSEK eliminates more constraints than there are free 

variables, indicating that the presolver has removed constraints considered redundant 

(and that the constraint matrix is thus not considered to be full rank). MOSEK’s 

documentation suggests reducing the tolerances used to identify redundant constraints if 

such a problem is expected, and that if this improves the situation then the problem is 

poorly formulated [75]. It is also noteworthy that MOSEK eliminates some of the 

conically-constrained variables in 2DfootingLBS and 3DtunheadLBS. Regardless of the 

cause, such behaviour is unexpected and strongly suggests that one should check the 

validity of their solutions, even they are reported by well-regarded software as 

“optimal” and “feasible”. 

Unsurprisingly, the commercial solvers, MOSEK and Gurobi, were generally better in 

terms of runtime and robustness, although Gurobi did exhibit some unexpectedly high 

IPM iteration counts for some of the problems, with the worst being 2DfootingLBS with 

126  iterations (where it was also the slowest solver tested). It also struggled to achieve 

sufficient primal feasibility on the two-dimensional lower bound problems and 

3DtunheadLBS. The better performance across the board is likely due to three main 

factors, the presolve phase removing many or all of the free variables from the problem 

formulation, the nested dissection ordering, and the purpose-built Cholesky factorisation 

routines used to obtain the search direction. 

Mix8 performs well on the two-dimensional problems, but is slower when solving those 

in three dimensions, and even failing on the lower bound tunnel heading 

(2DtunheadLBS), with MA57 reporting that the Schur complement matrix is singular in 

the first IPM iteration. There are obviously worthwhile gains possible for the *UB2 

problems where Mix8 exhibits slow convergence. It should be noted that the MA57 

documentation [79] does recommend using the graph partition-based nested dissection 
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ordering in METIS for large-scale matrices, but, for this subset of the problems, there is a 

negligible to small improvement over the MC50 AMD ordering. 

Another important difference between the two commercial solvers and the others is the 

eliminations performed during the presolve phase. In some of the problems, all of the 

free variables are eliminated from the problem before the problem is solved. In some 

cases, this leads to a significant reduction in the size of the problem (reducing both 

constraints and unknowns), as well as reducing the number of non-zero entries in the 

constraint matrix. The reduction in the number of constraints is most pronounced in the 

linear strain element-based upper bound formulations (*UB2 problems). This may be 

the basis of the difficulty encountered by the Mix8 solver on these problems. 

3.3.2 Finer mesh problems 
The slightly larger problems (identified by the ‘M’ at the end of the problem name) 

were simulated using all of the solvers except SeDuMi, which was deemed to be too 

slow on the small-scale problems to warrant its use on larger problems. The results of 

these analyses are shown in Figure 21 and Table 4. For a description of the table values, 

see Section 3.3 above. 

The difference between the two- and three-dimensional problems is more pronounced in 

Figure 21 than the corresponding chart for the small problem set yet is similar to that of 

the smaller problems, generally sitting within an order of magnitude within one another. 

Again, the cases in which some solvers were unable to compute acceptable solutions 

included MOSEK on the two-dimensional tunnel problems, where it reports an optimal 

solution that is over 20% and 13% different to the respective lower and upper bound 

solutions reported by all the remaining solvers. Mix8 failed on the first iteration for 

3DtunheadLBM, reporting a singular coefficient matrix. SDPT3SQL had numerical 

difficulties on a few of the problems, having to stop because the Schur complement was 

either singular or indefinite to machine precision. Even so, SDPT3SQL was only unable 

to solve one of those problems, 3DsqrexcUB2M, to sufficient accuracy. 
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Table 3. Available solver performance on the small size problems. 
Problem Solver nit tT tP tO pobj pfeas dfeas gap m n nnz(A) nnz(L) 

2DfootingLBS 
 

sedumi 8 235.7 - 85.7 -14.629 1E-5 7E-7 6E-12 465,360 523,812 2.96E+6 2.14E+7 
sdpt3sql 35 133.1 - - -14.834 9E-10 3E-8 4E-5 465,360 524,090 2.96E+6 2.29E+7 
sdpt3hsd 40 185.5 - - -14.834 5E-8 2E-6 7E-5 465,360 524,090 3.14E+6 2.48E+7 
gurobi 126 332.6 2.0 2.1 -14.834 3E-4 6E-9 8E-10 464,800 523,250 2.96E+6 1.98E+7 
mosek 25 41.2 0.3 8.2 -14.831 6E-9 6E-9 6E-9 464,940 523,391 2.79E+6 1.82E+7 
mix8 29 54.0 - 0.2 -14.832 2E-8 2E-8 2E-8 465,360 524,090 2.79E+6 2.75E+7 

2DfootingUBS 
 

sedumi 22 145.3 - 56.9 -14.916 1E-9 3E-9 1E-14 349,020 697,972 2.96E+6 1.97E+7 
sdpt3sql 51 160.8 - - -14.917 2E-10 3E-11 8E-9 349,020 698,950 2.96E+6 1.93E+7 
sdpt3hsd 56 200.3 - - -14.917 2E-8 1E-11 2E-9 349,020 698,950 3.20E+6 1.84E+7 
gurobi 32 44.7 2.3 1.5 -14.917 8E-11 9E-14 2E-11 348,320 697,270 2.96E+6 1.53E+7 
mosek 20 26.4 0.5 5.1 -14.914 5E-10 7E-9 3E-9 348,040 696,990 1.91E+6 1.41E+7 
mix8 22 28.2 - 0.1 -14.916 8E-9 7E-9 7E-9 349,020 698,950 1.92E+6 1.88E+7 

2DtunnelLBS 
 

sedumi 25 155.7 - 15.8 -0.787 8E-5 4E-7 8E-11 211,799 230,882 1.09E+6 6.38E+6 
sdpt3sql 68 94.3 - - -0.791 3E-10 2E-9 7E-7 211,799 288,960 1.44E+6 6.45E+6 
sdpt3hsd 76 125.9 - - -0.791 5E-7 3E-8 9E-6 211,799 288,960 1.73E+6 7.13E+6 
gurobi 59 53.9 1.0 1.0 -0.791 3E-5 3E-10 1E-10 210,819 229,900 1.09E+6 6.23E+6 
mosek 19 14.5 0.9 3.3 -0.767 5E-8 3E-8 3E-8 106,462 182,924 1.61E+6 6.32E+6 
mix8 43 23.2 - 0.1 -0.790 6E-9 8E-9 8E-9 211,799 288,960 1.32E+6 7.84E+6 

2DtunnelUBS 
 

sedumi 31 52.4 - 14.0 -0.824 1E-7 2E-9 2E-13 192,159 306,922 1.11E+6 5.85E+6 
sdpt3sql 48 52.0 - - -0.824 1E-12 2E-11 8E-9 192,159 384,400 1.46E+6 4.49E+6 
sdpt3hsd 79 109.5 - - -0.824 6E-9 3E-11 7E-9 192,159 384,400 1.84E+6 5.47E+6 
gurobi 45 30.9 1.4 0.9 -0.824 3E-11 8E-14 4E-12 191,069 305,830 1.10E+6 5.46E+6 
mosek 17 9.5 1.0 1.2 -0.796 4E-8 3E-8 3E-8 51,916 243,158 7.69E+5 3.89E+6 
mix8 26 13.6 - 0.1 -0.824 5E-9 6E-9 6E-9 192,159 384,400 1.06E+6 6.25E+6 

3DsqrexcLBS 
 

sedumi 18 689.8 - 13.5 -121.988 4E-5 5E-7 1E-10 164,355 190,466 9.64E+5 3.43E+7 
sdpt3sql 26 127.5 - - -121.989 3E-11 7E-8 3E-7 164,355 233,472 1.22E+6 3.29E+7 
sdpt3hsd 57 323.3 - - -121.989 7E-7 9E-13 5E-13 164,355 233,472 1.42E+6 3.44E+7 
gurobi 20 53.2 2.0 3.9 -121.988 6E-8 4E-10 2E-10 145,924 172,033 9.27E+5 2.17E+7 
mosek 17 29.3 0.2 2.6 -121.987 1E-8 3E-8 3E-8 121,348 147,458 1.41E+6 2.08E+7 
mix8 19 121.1 - 0.1 -121.988 7E-10 7E-9 7E-9 164,355 233,472 1.74E+6 3.60E+7 

3DsqrexcUBS 
 

sedumi 6 152.3 - 13.9 -31.145 1E+1 3E-2 2E-5 188,927 368,114 1.17E+6 2.77E+7 
sdpt3sql 43 171.8 - - -155.150 5E-10 3E-9 9E-9 188,927 487,392 1.59E+6 3.44E+7 
sdpt3hsd 69 360.2 - - -155.150 2E-6 4E-13 6E-13 188,927 487,392 2.10E+6 3.31E+7 
gurobi 52 149.3 42.2 2.9 -155.150 9E-8 4E-10 9E-10 112,752 291,937 9.99E+5 1.75E+7 
mosek 19 25.5 0.3 1.3 -155.147 3E-8 4E-8 4E-8 69,648 248,834 7.89E+5 1.50E+7 
mix8 23 89.9 - 0.1 -155.149 1E-9 9E-9 9E-9 188,927 487,392 1.32E+6 3.04E+7 

3DsqrexcUB2S 
 

sedumi 30 380.8 - 4.8 -138.248 4E-7 2E-9 6E-13 83,189 204,184 2.83E+6 1.83E+7 
sdpt3sql 63 188.8 - - -137.365 6E-12 2E-3 1E-2 83,189 260,908 3.50E+6 1.76E+7 
sdpt3hsd 93 347.7 - - -138.248 1E-7 8E-11 4E-9 83,189 260,908 3.76E+6 1.85E+7 
gurobi 30 34.3 1.6 1.2 -138.248 9E-11 9E-12 3E-10 52,010 173,003 2.62E+6 8.10E+6 
mosek 26 19.1 0.6 1.3 -138.246 2E-7 2E-8 2E-8 31,227 152,221 1.15E+6 6.92E+6 
mix8 49 525.3 - 0.3 -138.242 2E-9 9E-9 9E-9 83,189 260,908 1.99E+6 3.83E+7 

3DsqrfootLBS 
 

sedumi 21 6539.8 - 8.7 -5.492 1E-6 4E-9 2E-12 153,648 181,766 9.32E+5 3.43E+7 
sdpt3sql 33 159.5 - - -5.492 5E-12 1E-10 7E-9 153,648 208,008 1.13E+6 3.30E+7 
sdpt3hsd 59 322.3 - - -5.492 7E-9 4E-11 1E-9 153,648 208,008 1.26E+6 3.33E+7 
gurobi 40 94.5 1.1 5.3 -5.492 2E-10 6E-11 4E-11 153,252 181,440 9.31E+5 2.59E+7 
mosek 21 78.2 0.8 4.6 -5.492 9E-9 2E-8 2E-8 109,786 163,895 2.12E+6 3.28E+7 
mix8 23 152.0 - 0.1 -5.492 5E-10 5E-9 5E-9 153,648 208,008 1.79E+6 3.55E+7 

3DsqrfootUBS 
 

sedumi 14 418.4 - 6.1 -6.484 2E-1 2E-6 8E-10 121,932 312,230 9.98E+5 3.14E+7 
sdpt3sql 34 135.1 - - -6.234 2E-13 1E-10 1E-8 121,932 360,720 1.21E+6 3.25E+7 
sdpt3hsd 51 244.5 - - -6.234 9E-9 2E-10 3E-9 121,932 360,720 1.45E+6 3.01E+7 
gurobi 23 55.1 1.0 5.0 -6.234 9E-10 5E-10 2E-11 119,340 309,636 9.75E+5 2.21E+7 
mosek 18 29.1 0.7 2.3 -6.234 9E-9 2E-8 2E-8 36,430 270,023 1.03E+6 1.53E+7 
mix8 25 124.5 - 0.1 -6.234 3E-10 3E-9 3E-9 121,932 360,720 1.19E+6 3.08E+7 

3DsqrfootUB2S 
 

sedumi 21 98.6 - 3.1 -6.170 5E-7 2E-9 9E-13 56,549 184,616 2.86E+6 1.07E+7 
sdpt3sql 44 97.7 - - -6.170 3E-13 1E-10 6E-9 56,549 213,708 3.48E+6 1.16E+7 
sdpt3hsd 76 195.2 - - -6.170 6E-9 8E-11 6E-9 56,549 213,708 3.62E+6 1.17E+7 
gurobi 40 50.5 1.6 1.3 -6.170 1E-9 1E-11 3E-11 54,605 182,645 2.73E+6 1.14E+7 
mosek 19 15.0 0.5 1.1 -6.169 1E-8 3E-8 3E-8 27,882 181,843 1.06E+6 7.92E+6 
mix8 32 56.9 - 0.1 -6.170 3E-9 4E-9 4E-9 56,549 213,708 2.00E+6 1.16E+7 

3DtunheadLBS 
 

sedumi 10 546.6 - 21.5 -18.848 4E-2 5E-4 6E-8 246,167 282,494 1.83E+6 5.13E+7 
sdpt3sql 60 467.6 - - -22.395 2E-8 2E-9 5E-8 246,167 324,792 2.26E+6 5.37E+7 
sdpt3hsd 76 656.5 - - -22.395 1E-6 6E-11 3E-10 246,167 324,792 2.46E+6 5.34E+7 
gurobi 47 210.0 1.9 8.0 -22.395 9E-5 9E-7 2E-10 243,708 280,225 1.82E+6 3.87E+7 
mosek 24 88.3 0.5 4.9 -22.394 2E-5 7E-8 6E-7 203,063 239,581 2.39E+6 3.75E+7 
mix8 0 11.1 - 0.2 0.000 3E-1 1E+0 1E+0 246,167 324,792 2.91E+6 5.55E+7 

3DtunheadUBS 
 

sedumi 24 800.6 - 14.2 -33.423 3E-2 1E-7 2E-11 190,151 484,130 1.92E+6 4.44E+7 
sdpt3sql 73 430.4 - - -33.432 8E-9 4E-10 1E-8 190,151 561,528 2.39E+6 4.91E+7 
sdpt3hsd 43 317.9 - - -33.432 7E-6 6E-6 1E-4 190,151 561,528 2.76E+6 4.96E+7 
gurobi 29 139.2 1.6 5.9 -33.432 6E-6 2E-9 7E-11 184,860 478,837 1.87E+6 3.04E+7 
mosek 20 46.1 0.4 2.0 -33.430 4E-8 4E-8 4E-8 112,752 406,730 1.21E+6 2.62E+7 
mix8 44 251.1 - 0.1 -33.432 7E-9 5E-11 5E-11 190,151 561,528 1.85E+6 4.18E+7 
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Figure 21. Comparison of the total solution time of the medium problem set between 
some of the available solvers. Note that one of the Mix8 values has been cut off (the 

value is available in Table 4) and simulations that did not successfully converge have 
been removed from the chart. 

The two simplified HSD formulations, MOSEK and Mix8, generally had the lowest 

iteration counts of approximately 15 to 25 iterations. Notable exceptions were the 

2DtunnelLBM and 3DsqrexcUB2M, where the Mix8 solver was slower to converge and 

even stopped due to a maximum number of iterations for the latter problem. 

Unfortunately, the *UB2 problems still proved difficult for all of the non-commercial 

solvers yet, in addition to the improved upper bounds computed, were solved 

significantly faster than their counterpart *UB problems by the commercial solvers. For 

example, on the square footing problem, MOSEK solved the quadratic formulation three 

times faster than 3DsqrfootUB with a bound improvement of 1%. Similar to the small 

problems, Gurobi spent a large number of iterations on some of the problems and had a 

blow-out in the presolve time on 3DsqrexcUBM. In general, though, it reliably attained 

a suitably accurate and feasible solution. 

MOSEK was the fastest solver on every problem except 3DsqrfootLBM, where Gurobi 

was less than a quarter of a percent faster. Furthermore, MOSEK was the fastest solver per 

iteration except on 3DsqrfootLBM (taking the presolve and ordering time into account 

makes negligible difference) and also the lowest iteration count on every problem but 

3DsqrexcUB2M. The per iteration time difference may be correlates with the dimension 

of the system to be factorised and the amount of fill-in in the factor with MOSEK 
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eliminating more equations and variables from the original problem formulation in 

every problem but 2DfootingLBM, where Gurobi has a slight lead over MOSEK. MOSEK 

also has fewer non-zeros in the factorisation in every problem except 3DsqrfootLBM 

where it is slower than Gurobi on a per iteration basis but as Gurobi takes 31 iterations 

to convergence versus MOSEK’s 21, MOSEK takes less than a second longer to solve the 

problem than Gurobi’s 374.4s. This shows that performance improvements are possible 

in the details of the IPM algorithm as well as in the linear solver. 

The largest problems (with a ‘L’ at the end of the problem name) were only solved 

using the two commercial solvers, MOSEK and Gurobi, with the remaining solvers 

requiring too much time and/or memory to solve these problems. Both of these solvers 

presolve the problem and use a nested dissection ordering with a supernodal Cholesky 

solver, a clear sign of the suitability of the combination. Note that all bar one of these 

problems has over a million unknowns in the original optimisation problem formulation 

(the exception being the 2DtunnelLBL, still with over 900,000 variables), with the 

largest having almost four million variables. The number of constraints in these 

problems ranges from 750,000 to 2,000,000, indicating that these are truly large-scale 

problems. The results of these analyses are shown in Table 5 (the description of the 

table values is provided in Section 3.3 above). 

 

Figure 22. Comparison of the total solution time of the large problem set between the 
two commercial solvers. Note that simulations that did not successfully converge have 

been removed from the chart 
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For the two-dimensional tunnel problems 2DtunnelLBL and 2DtunnelUBL, MOSEK’s 

results are even further from the optimal value than on the coarser meshes, with both 

solutions more than 40% off the Gurobi results. What is most striking about these 

results is the extreme growth in the time required to solve some of the problems over 

their coarser mesh counterparts. The solution times ranged from just under 10 minutes 

to over two hours for the three-dimensional problems, while MOSEK solved the two-

dimensional problems in approximately three minutes or less. The algorithmic details of 

the IPM implementation evidently have an impact, as seen in the better performance of 

MOSEK over Gurobi on these larger problems in the number of IPM iterations spent 

converging to a solution with Gurobi taking two to 9 times more iterations than MOSEK 

except on 3DsqrexcUB2L, where Gurobi converges in 24 iterations against MOSEK’s 20. 

Between these two solvers, it is the capability of the IPM algorithm to converge within 

a small number of iterations that drives the total performance of the solver, but the 

ability to efficiently obtain the search direction as the problems become larger that is the 

primary factor in whether or not a given problem is able to be solved. MOSEK is again 

faster than Gurobi on a per iteration basis on every problem except 3DsqrfootLBL. 

The relative performance of Gurobi and MOSEK on the large problems in the test set 

supports the notion that any performance enhancement effort should target the approach 

used to obtain the search direction at each iteration of the IPM in order to ensure 

progress can be made efficiently towards a solution. In addition, the algorithm used by 

the MOSEK solver generally dominates that used in Gurobi with a consistent and low 

iteration count on all the problems in the test set, which drives the total performance of 

the solver. 

3.3.3 Comparison summary 
Over the set of small, medium, and large problems, a few important patterns emerge 

concerning the effort necessary to solve the problems as they grow in size. The average 

number of IPM iterations remains constant as the problems grow in size, with an 

average of 35 to 40 iterations per problem for the results provided. A minimum of 15 to 

a maximum of 150 iterations are needed to obtain solutions of sufficient accuracy. The 

time and storage required to solve the three-dimensional problems, however, shows a 

different behaviour as they grow in size, despite the fact that the number of entries in 
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the constraint matrix is constant at approximately 5 to 15 per row (with roughly the 

same number of non-zeros per column). 

While the use of the nested dissection ordering in Gurobi and MOSEK appears superior to 

the AMD orderings used in the other solvers, this difference plays a secondary role to 

the problem dimensionality. The ratio of the number of non-zeros in the factorisation to 

the number of non-zeros in the constraint matrix, as a function of the number of 

unknowns in the problem, is much higher for the three-dimensional problems than for 

the two-dimensional problems. This is due to the greater connectivity in the three-

dimensional mesh, resulting in a higher level of fill-in. 

Interestingly, in the linear strain element-based upper bound method the storage growth 

observed is not as severe as the formulations with inter-element discontinuities, since 

the factorisations in the UB2 problems have a fill-in ratio that is roughly comparable 

with that in two dimensions. A summary of the ratio of the non-zeros in the 

factorisation to the non-zeros in the constraint matrix as reported by MOSEK is shown in 

Table 6. Even though the different formulation can lead to a significant improvement in 

terms of tightness of the limit load computed and a reduction in runtime, there is still a 

distinct difference in the runtime behaviour between the three-dimensional and two-

dimensional problems. This is seen clearly in Figure 23, which shows the time per 

iteration as a function of the number of unknowns in the problem as solved (after 

presolving and variable conversion has taken place) for MOSEK on all of the problems in 

the test set. 

The runtime for the two-dimensional problems, at this scale, appears almost linear, 

while the three-dimensional problems display a distinctly nonlinear growth. This 

behaviour is evident across all the solvers considered, regardless of whether time per 

iteration or total run time is considered (because of the relatively constant number of 

IPM iterations as the problem size grows), or whether the number of constraints or the 

number of unknowns is used as a measure of the size of the problem. It is hoped that, 

through a suitable use of parallelisation and some combination of efficient iterative and 

direct methods, the growth in solution time for the three-dimensional problems can be 

contained to behave more like the two-dimensional problem solution time. 
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Table 4. Available solver performance on the medium size problems. 
Problem Solver nit tT tP tO pobj pfeas dfeas gap m n nnz(A) nnz(L) 

2DfootingLBM 
 

sdpt3sql 48 504.2 - - -14.834 2E-9 2E-9 2E-6 1,050,840 1,183,035 6.69E+6 6.67E+7 
sdpt3hsd 46 520.1 - - -14.834 1E-7 7E-8 1E-5 1,050,840 1,183,035 7.09E+6 6.50E+7 
gurobi 115 766.4 4.6 5.3 -14.834 4E-5 5E-7 1E-9 1,050,000 1,181,775 6.69E+6 5.00E+7 
mosek 20 90.0 0.7 20.5 -14.825 8E-9 8E-9 8E-9 1,050,210 1,181,986 6.32E+6 4.58E+7 
mix8 24 127.3 - 0.4 -14.832 1E-8 2E-8 2E-8 1,050,840 1,183,035 6.30E+6 6.86E+7 

2DfootingUBM 
 

sdpt3sql 55 393.4 - - -14.891 3E-10 2E-11 9E-9 788,130 1,577,625 6.70E+6 4.45E+7 
sdpt3hsd 63 570.0 - - -14.891 3E-8 1E-11 2E-9 788,130 1,577,625 7.23E+6 4.84E+7 
gurobi 37 134.8 4.9 3.6 -14.891 2E-11 9E-14 8E-12 787,080 1,575,105 6.69E+6 3.76E+7 
mosek 20 62.3 1.1 12.4 -14.886 5E-10 5E-9 2E-9 786,660 1,574,685 4.32E+6 3.41E+7 
mix8 23 86.2 - 0.3 -14.885 9E-9 8E-9 8E-9 788,130 1,577,625 4.33E+6 5.13E+7 

2DtunnelLBM 
 

sdpt3sql 87 310.0 - - -0.798 3E-10 1E-10 7E-8 476,099 649,440 3.24E+6 1.77E+7 
sdpt3hsd 60 237.7 - - -0.798 6E-6 6E-7 2E-4 476,099 649,440 3.89E+6 1.82E+7 
gurobi 56 123.8 2.0 2.3 -0.798 5E-5 2E-11 4E-10 474,629 517,650 2.46E+6 1.56E+7 
mosek 16 33.3 2.0 7.3 -0.649 4E-8 4E-8 4E-8 267,653 439,945 3.18E+6 1.55E+7 
mix8 44 60.5 - 0.2 -0.798 5E-9 7E-9 7E-9 476,099 649,440 2.98E+6 1.90E+7 

2DtunnelUBM 
 

sdpt3sql 60 160.0 - - -0.816 4E-12 1E-11 7E-9 432,239 864,600 3.28E+6 1.16E+7 
sdpt3hsd 56 191.5 - - -0.816 9E-8 5E-6 6E-4 432,239 864,600 4.15E+6 1.38E+7 
gurobi 47 80.3 2.9 2.1 -0.816 4E-10 6E-13 2E-12 430,604 689,145 2.49E+6 1.39E+7 
mosek 15 22.5 2.6 3.4 -0.718 2E-8 2E-8 2E-8 144,197 575,059 1.73E+6 1.02E+7 
mix8 25 33.4 - 0.2 -0.816 6E-9 7E-9 7E-9 432,239 864,600 2.38E+6 1.58E+7 

3DsqrexcLBM 
 

sdpt3sql 30 2935.3 - - -125.524 7E-11 8E-8 5E-7 554,048 787,968 4.14E+6 2.39E+8 
sdpt3hsd 63 3917.7 - - -125.524 4E-6 6E-13 7E-13 554,048 787,968 4.80E+6 2.29E+8 
gurobi 35 633.0 24.2 19.6 -125.524 4E-7 2E-9 2E-10 491,841 580,609 3.15E+6 1.15E+8 
mosek 16 245.8 0.5 11.1 -125.520 1E-8 3E-8 3E-8 408,897 497,666 4.77E+6 1.14E+8 
mix8 21 1817.6 - 0.6 -125.524 3E-9 7E-9 7E-9 554,048 787,968 5.91E+6 2.29E+8 

3DsqrexcUBM 
 

sdpt3sql 44 1174.6 - - -148.410 2E-9 2E-8 1E-7 639,359 1,649,592 5.39E+6 2.26E+8 
sdpt3hsd 65 2522.9 - - -148.410 1E-5 5E-11 1E-10 639,359 1,649,592 7.13E+6 2.32E+8 
gurobi 37 1391.6 803.1 14.5 -148.410 8E-7 5E-9 2E-10 385,020 995,545 3.43E+6 9.79E+7 
mosek 18 197.8 0.9 4.8 -148.403 2E-8 3E-8 3E-8 239,652 850,178 2.74E+6 8.50E+7 
mix8 23 1242.8 - 0.5 -148.410 3E-9 5E-9 5E-9 639,359 1,649,592 4.49E+6 1.89E+8 

3DsqrexcUB2
M 
 

sdpt3sql 100 2088.3 - - -134.865 9E-11 1E-3 2E-2 273,389 866,604 1.18E+7 1.14E+8 
sdpt3hsd 100 2146.6 - - -135.588 2E-7 2E-10 2E-8 273,389 866,604 1.27E+7 1.06E+8 
gurobi 19 151.7 4.7 6.7 -135.588 3E-6 7E-12 3E-10 174,134 582,879 9.05E+6 4.63E+7 
mosek 23 110.4 2.2 5.4 -135.584 1E-7 2E-8 2E-8 104,910 513,656 4.01E+6 3.74E+7 
mix8 60 15941.1 - 1.4 -135.578 6E-9 1E-8 1E-8 273,389 866,604 6.63E+6 3.45E+8 

3DsqrfootLBM 
 

sdpt3sql 36 804.5 - - -5.557 8E-11 1E-10 1E-8 363,904 492,672 2.68E+6 1.30E+8 
sdpt3hsd 77 1854.7 - - -5.557 1E-8 5E-14 2E-12 363,904 492,672 2.99E+6 1.31E+8 
gurobi 31 374.4 2.7 15.1 -5.557 1E-9 2E-10 7E-12 363,200 430,080 2.21E+6 8.73E+7 
mosek 21 375.3 1.9 12.9 -5.557 1E-8 3E-8 3E-8 261,560 389,881 5.02E+6 1.08E+8 
mix8 26 956.2 - 0.3 -5.557 5E-10 5E-9 5E-9 363,904 492,672 4.25E+6 1.24E+8 

3DsqrfootUB
M 
 

sdpt3sql 37 741.8 - - -6.112 2E-14 7E-11 8E-9 289,728 856,320 2.88E+6 1.23E+8 
sdpt3hsd 56 1246.4 - - -6.112 7E-9 9E-11 2E-9 289,728 856,320 3.43E+6 1.23E+8 
gurobi 33 351.9 2.1 10.9 -6.112 2E-10 5E-11 9E-12 285,120 738,624 2.34E+6 7.47E+7 
mosek 21 179.2 2.0 7.1 -6.112 8E-9 2E-8 2E-8 91,185 648,546 2.51E+6 5.67E+7 
mix8 23 721.3 - 0.2 -6.112 4E-10 4E-9 4E-9 289,728 856,320 2.83E+6 1.09E+8 

3DsqrfootUB2
M 
 

sdpt3sql 47 348.2 - - -6.048 2E-10 7E-11 8E-9 132,149 502,668 8.24E+6 4.10E+7 
sdpt3hsd 89 738.9 - - -6.048 7E-9 6E-11 6E-9 132,149 502,668 8.57E+6 4.12E+7 
gurobi 67 323.8 3.4 5.1 -6.048 2E-9 4E-11 8E-12 128,794 432,258 6.56E+6 3.43E+7 
mosek 19 60.7 1.3 3.0 -6.048 1E-8 3E-8 3E-8 65,970 430,875 2.58E+6 2.72E+7 
mix8 33 293.4 - 0.2 -6.048 5E-9 6E-9 6E-9 132,149 502,668 4.70E+6 4.14E+7 

3DtunheadLB
M 
 

sdpt3sql 67 2321.2 - - -22.736 9E-10 7E-9 2E-7 587,983 774,304 5.42E+6 2.00E+8 
sdpt3hsd 41 1582.4 - - -22.735 5E-6 1E-5 2E-4 587,983 774,304 5.92E+6 2.03E+8 
gurobi 87 1536.9 4.9 22.5 -22.736 1E-5 2E-6 2E-11 583,424 670,209 4.38E+6 1.30E+8 
mosek 28 414.5 1.3 12.8 -22.735 1E-7 2E-7 2E-6 486,495 573,281 5.77E+6 1.18E+8 
mix8 0 70.1 - 0.5 0.000 2E-1 1E+0 1E+0 587,983 774,304 7.00E+6 2.03E+8 

3DtunheadUB
M 
 

sdpt3sql 73 1949.8 - - -32.297 9E-9 2E-9 7E-8 454,879 1,342,528 5.73E+6 1.69E+8 
sdpt3hsd 53 1599.3 - - -32.296 7E-6 9E-6 2E-4 454,879 1,342,528 6.62E+6 1.72E+8 
gurobi 30 508.7 3.6 16.3 -32.297 2E-6 2E-11 5E-11 445,280 1,152,081 4.53E+6 1.08E+8 
mosek 20 217.1 1.0 5.6 -32.293 3E-8 3E-8 3E-8 274,032 980,834 2.96E+6 8.98E+7 
mix8 48 1925.7 - 0.3 -32.297 1E-8 3E-11 3E-11 454,879 1,342,528 4.43E+6 1.59E+8 
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Table 5. Available solver performance on the large size problems. 
Problem Solver nit tT tP tO pobj pfeas dfeas gap m n nnz(A) nnz(L) 

2DfootingLBL 
gurobi 144 1875.4 8.4 19.2 -14.834 5E-4 7E-8 2E-9 1,870,400 2,104,900 1.19E+7 9.67E+7 

mosek 16 148.3 1.3 38.9 -14.823 8E-9 5E-9 5E-9 1,870,680 2,105,181 1.12E+7 8.55E+7 

2DfootingUBL 
gurobi 47 357.5 8.1 6.8 -14.877 2E-11 6E-14 5E-12 1,402,240 2,805,740 1.19E+7 7.28E+7 

mosek 17 108.3 1.9 24.3 -14.868 4E-10 6E-9 3E-9 1,401,680 2,805,180 7.70E+6 6.53E+7 

2DtunnelLBL 
gurobi 70 284.6 3.5 4.3 -0.801 1E-4 4E-11 4E-10 844,039 920,600 4.37E+6 3.03E+7 

mosek 15 57.8 3.5 13.2 -0.480 5E-8 5E-8 5E-8 513,831 820,353 5.19E+6 2.81E+7 

2DtunnelUBL 
gurobi 45 145.5 4.9 3.9 -0.813 3E-10 1E-13 1E-12 766,139 1,226,060 4.44E+6 2.63E+7 

mosek 15 44.8 4.6 6.9 -0.481 4E-8 3E-8 3E-8 301,965 1,068,447 3.04E+6 1.99E+7 

3DsqrexcLBL 
gurobi 40 1689.1 93.9 35.9 -123.875 3E-6 7E-7 3E-10 918,352 1,085,953 5.89E+6 2.39E+8 

mosek 20 785.3 1.0 22.7 -123.869 1E-8 3E-8 3E-8 763,216 930,818 8.92E+6 2.37E+8 

3DsqrexcUBL 
gurobi 53 8741.4 5199.0 33.8 -144.453 4E-6 3E-11 6E-11 917,952 2,371,969 8.20E+6 3.29E+8 

mosek 17 1108.8 2.2 14.4 -144.429 3E-8 4E-8 4E-8 573,504 2,027,522 6.60E+6 2.93E+8 

3DsqrexcUB2L 
gurobi 20 567.2 10.4 34.0 -134.449 1E-7 7E-11 6E-11 411,026 1,380,371 2.17E+7 1.45E+8 

mosek 24 523.2 5.2 14.0 -134.439 2E-7 3E-8 3E-8 246,277 1,215,623 9.60E+6 1.28E+8 

3DsqrfootLBL 
gurobi 46 5916.4 6.8 48.8 -5.629 3E-10 2E-11 4E-12 1,225,584 1,451,520 7.49E+6 4.93E+8 

mosek 20 3432.3 7.6 51.4 -5.628 2E-8 3E-8 3E-8 914,109 1,347,406 1.58E+7 5.64E+8 

3DsqrfootUBL 
gurobi 33 3378.4 6.4 35.7 -5.991 5E-10 1E-10 1E-12 969,840 2,508,624 7.97E+6 4.18E+8 

mosek 23 2030.6 7.7 27.3 -5.991 1E-8 3E-8 3E-8 394,485 2,287,918 7.93E+6 3.36E+8 

3DsqrfootUB2L 
gurobi 65 2435.6 10.7 35.5 -5.949 1E-9 1E-11 4E-12 432,446 1,456,514 2.24E+7 1.86E+8 

mosek 18 556.1 4.8 12.6 -5.949 1E-8 3E-8 3E-8 221,686 1,453,115 8.92E+6 1.53E+8 

3DtunheadLBL 
gurobi 51 8512.7 22.6 93.3 -22.752 4E-5 3E-9 1E-10 1,987,776 2,282,113 1.50E+7 6.97E+8 

mosek 22 3482.4 4.4 56.6 -22.737 8E-6 1E-6 1E-5 1,658,879 1,953,217 1.98E+7 6.60E+8 

3DtunheadUBL 
gurobi 52 7787.1 11.5 58.7 -30.780 8E-6 2E-11 8E-12 1,526,976 3,946,393 1.56E+7 6.17E+8 
mosek 19 2363.7 3.3 25.0 -30.768 3E-8 3E-8 3E-8 948,024 3,367,442 1.03E+7 5.24E+8 

 

Table 6. The ratio of the number of non-zeros in the factorisation used to determine the 
search direction to the number of non-zeros in the constraint matrix as reported by 

MOSEK. 

  min avg max 

2D Small 4 6 7 
Medium 5 6 8 

Large 5 7 8 

3D without UB2 Small 15 17 22 
Medium 20 25 31 

Large 27 39 51 

3D Small 6 14 22 
Medium 9 21 31 

Large 13 33 51 

UB2 only Small 6 7 7 
Medium 9 10 11 

Large 13 15 17 
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Figure 23. Total solution time vs number of problem constraints for MOSEK. Note that 
the number of problem constraints is that of the original problem formulation before 

any presolving takes place.  

3.4 Improving on the basic IPM implementation 
While Mix8 performed well on the two-dimensional problems in the test set, its relative 

performance on the three-dimensional problems was significantly less satisfactory. In 

seeking to improve the performance of Mix8, major modifications that are likely to 

improve its performance include the method used to obtain the search direction at each 

iteration of the IPM, how the free variables in the problem are treated by the IPM, and 

exploiting any structure in the original problem formulation that may be beneficial such 

as fixed variables and dense columns. If a factorisation routine is used to compute the 

search direction, the choice of factorisation method and the sparsity-preserving 

permutation used can have an order of magnitude difference in performance in terms of 

runtime and a considerable difference in the amount of required memory. The common 

high-performance factorisation approaches applicable in this case are the multifrontal 

and left-looking supernodal methods, while the two common permutations are the 

approximate minimum degree and nested dissection (or graph partition) orderings. 
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Below, the performance of Mix8 is reported comparing the improvements possible with 

different reorderings, how free variables are represented, and when some types of 

problem structure are exploited. 

3.4.1 Choice of direct method 
Most described IPMs report that they use supernodal Cholesky factorisations to 

determine the search direction at each step of the IPM. Because of the increasingly ill-

conditioned Schur complements, the use of a Cholesky solver generally requires some 

way of dealing with non-positive pivots before taking the square root [40]. For the tests 

here, a left-looking supernodal Cholesky routine based on CHOLMOD [102] with a 

modified BLAS dpotf2 subroutine that substitutes a large value ( 3210  is used) for any 

diagonal entry that is less than or equal to zero, although a more elegant approach is 

described by Stewart [205] for non-singular systems. 

Table 7 shows the results on the small problem set and Table 8 the results for the 

medium problem set. The non-zeros in the factor reported for the supernodal Cholesky 

factorisation reflect the total floating point storage required to hold the factor; each 

supernode is held in a rectangle, so there are a number of unused entries in the diagonal 

block, as well as the zeros introduced through supernode amalgamation. This leads to a 

higher effective non-zero count on each problem even though the same ordering is used. 

In the small problem set, the supernodal solver reports between an additional two and 

14 million non-zeros with an average of six million additional non-zeros over the 

multifrontal solver. This increases to an average of 15 million additional non-zeros in 

the medium problem set, although, in the case of 3DsqrexcUB2M, the multifrontal 

solver reports 345 million non-zeros while the supernodal solver reports just 154 

million. This discrepancy is caused by the dynamic reordering in the multifrontal solver 

that provides the ability to solve indefinite problems when such situations are 

encountered in the numerical phase. The runtime, however, is reduced on all the 

problems solved as shown in Figure 24 and Figure 25, with the exception of the lower 

bound on the tunnel heading where the multifrontal solver reports a singular system and 

the IPM stops before reaching convergence. While there is no major improvement for 

the two-dimensional problems, most of the three-dimensional problems benefit 

significantly from the use of the supernodal solver over the multifrontal solver. This is 
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especially so for the 3DsqrexcUB2 problems, with almost a 6 ×  speedup per iteration 

on the small problem, and a 13×  speedup on the medium problem. The diagonal 

perturbation of non-positive pivots has allowed some progress to be made towards 

solving the 3DtunheadLB problems. The average time per iteration in the small problem 

set was reduced from 4.0s to 2.4s, and from 48.7s to 18.0s on the medium problem set 

showing an increasing improvement as the linear system becomes larger. While the 

iteration counts are, on average, almost identical at 27.9 and 27.8 iterations per problem 

in the small test set and 29.2 and 29.6 in the medium for the multifrontal and supernodal 

solvers, respectively, only two of the 12 problems in the small set and one of the 12 in 

the medium had the same iteration count. This is due to the small differences in the 

computed search direction between the two solvers. 

 

Figure 24. Comparison of the total solution time on the small problem set between the 
multifrontal and supernodal direct solvers. 
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Table 7. Comparison of multifrontal and supernodal factorisation on small problem set. 
Problem Solver nit tT pobj pfeas dfeas gap m n nnz(A) nnz(L) tT/nit 

2DfootingLBS 
multifrontal 29 54.0 -14.832 2E-8 2E-8 2E-8 465,360 524,090 2.79E+6 2.75E+7 1.9 

supernodal 27 35.1 -14.833 1E-8 2E-8 2E-8 465,360 524,090 2.79E+6 3.42E+7 1.3 

2DfootingUBS 
multifrontal 22 28.2 -14.916 8E-9 7E-9 7E-9 349,020 698,950 1.92E+6 1.88E+7 1.3 

supernodal 24 23.6 -14.916 7E-9 6E-9 6E-9 349,020 698,950 1.92E+6 2.35E+7 1.0 

2DtunnelLBS 
multifrontal 43 23.2 -0.790 6E-9 8E-9 8E-9 211,799 288,960 1.32E+6 7.84E+6 0.5 

supernodal 40 17.0 -0.790 6E-9 8E-9 8E-9 211,799 288,960 1.32E+6 1.03E+7 0.4 

2DtunnelUBS 
multifrontal 26 13.6 -0.824 5E-9 6E-9 6E-9 192,159 384,400 1.06E+6 6.25E+6 0.5 

supernodal 24 10.8 -0.824 6E-9 7E-9 7E-9 192,159 384,400 1.06E+6 8.18E+6 0.4 

3DsqrexcLBS 
multifrontal 19 121.1 -121.988 7E-10 7E-9 7E-9 164,355 233,472 1.74E+6 3.60E+7 6.4 

supernodal 19 75.6 -121.988 1E-9 9E-9 9E-9 164,355 233,472 1.74E+6 4.83E+7 4.0 

3DsqrexcUB2S 
multifrontal 49 525.3 -138.242 2E-9 9E-9 9E-9 83,189 260,908 1.99E+6 3.83E+7 10.7 

supernodal 51 90.3 -138.244 2E-9 6E-9 6E-9 83,189 260,908 1.99E+6 2.38E+7 1.8 

3DsqrexcUBS 
multifrontal 23 89.9 -155.149 1E-9 9E-9 9E-9 188,927 487,392 1.32E+6 3.04E+7 3.9 

supernodal 23 62.9 -155.149 1E-9 1E-8 1E-8 188,927 487,392 1.32E+6 4.11E+7 2.7 

3DsqrfootLBS 
multifrontal 23 152.0 -5.492 5E-10 5E-9 5E-9 153,648 208,008 1.79E+6 3.55E+7 6.6 

supernodal 24 82.5 -5.492 5E-10 5E-9 5E-9 153,648 208,008 1.79E+6 4.40E+7 3.4 

3DsqrfootUB2S 
multifrontal 32 56.9 -6.170 3E-9 4E-9 4E-9 56,549 213,708 2.00E+6 1.16E+7 1.8 

supernodal 30 33.1 -6.170 3E-9 5E-9 5E-9 56,549 213,708 2.00E+6 1.48E+7 1.1 

3DsqrfootUBS 
multifrontal 25 124.5 -6.234 3E-10 3E-9 3E-9 121,932 360,720 1.19E+6 3.08E+7 5.0 

supernodal 24 78.5 -6.234 4E-10 4E-9 4E-9 121,932 360,720 1.19E+6 4.40E+7 3.3 

3DtunheadLBS 
multifrontal 0 11.1 0.000 3E-1 1E+0 1E+0 246,167 324,792 2.91E+6 5.55E+7 - 

supernodal 12 67.9 -21.229 7E-5 2E-4 2E-4 246,167 324,792 2.91E+6 6.89E+7 5.7 

3DtunheadUBS 
multifrontal 44 251.1 -33.432 7E-9 5E-11 5E-11 190,151 561,528 1.85E+6 4.18E+7 5.7 
supernodal 36 128.4 -33.432 3E-8 4E-9 4E-9 190,151 561,528 1.85E+6 5.20E+7 3.6 

 

 

Figure 25. Comparison of the total solution time on the medium problem set between 
the multifrontal and supernodal direct solvers. 
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Table 8. Comparison of multifrontal and supernodal factorisation on medium problem 
set. 

Problem Solver nit tT pobj pfeas dfeas gap m n nnz(A) nnz(L) tT/nit 

2DfootingLBM 
multifrontal 24 127.3 -14.832 1E-8 2E-8 2E-8 1,050,840 1,183,035 6.30E+6 6.86E+7 5.3 

supernodal 25 90.0 -14.832 4E-8 1E-8 1E-8 1,050,840 1,183,035 6.30E+6 8.44E+7 3.6 

2DfootingUBM 
multifrontal 23 86.2 -14.885 9E-9 8E-9 8E-9 788,130 1,577,625 4.33E+6 5.13E+7 3.7 

supernodal 23 63.3 -14.890 8E-9 7E-9 7E-9 788,130 1,577,625 4.33E+6 6.28E+7 2.8 

2DtunnelLBM 
multifrontal 44 60.5 -0.798 5E-9 7E-9 7E-9 476,099 649,440 2.98E+6 1.90E+7 1.4 

supernodal 41 43.6 -0.798 7E-9 1E-8 1E-8 476,099 649,440 2.98E+6 2.51E+7 1.1 

2DtunnelUBM 
multifrontal 25 33.4 -0.816 6E-9 7E-9 7E-9 432,239 864,600 2.38E+6 1.58E+7 1.3 

supernodal 24 26.9 -0.816 5E-9 6E-9 6E-9 432,239 864,600 2.38E+6 2.03E+7 1.1 

3DsqrexcLBM 
multifrontal 21 1817.6 -125.524 3E-9 7E-9 7E-9 554,048 787,968 5.91E+6 2.29E+8 86.6 

supernodal 19 961.1 -125.524 9E-10 8E-9 8E-9 554,048 787,968 5.91E+6 3.09E+8 50.6 

3DsqrexcUB2M 
multifrontal 60 15941.1 -135.578 6E-9 1E-8 1E-8 273,389 866,604 6.63E+6 3.45E+8 265.7 

supernodal 61 1211.7 -135.578 8E-9 2E-8 2E-8 273,389 866,604 6.63E+6 1.54E+8 19.9 

3DsqrexcUBM 
multifrontal 23 1242.8 -148.410 3E-9 5E-9 5E-9 639,359 1,649,592 4.49E+6 1.89E+8 54.0 

supernodal 22 717.8 -148.409 2E-9 2E-8 2E-8 639,359 1,649,592 4.49E+6 2.50E+8 32.6 

3DsqrfootLBM 
multifrontal 26 956.2 -5.557 5E-10 5E-9 5E-9 363,904 492,672 4.25E+6 1.24E+8 36.8 

supernodal 27 639.3 -5.557 9E-10 9E-9 9E-9 363,904 492,672 4.25E+6 1.77E+8 23.7 

3DsqrfootUB2M 
multifrontal 33 293.4 -6.048 5E-9 6E-9 6E-9 132,149 502,668 4.70E+6 4.14E+7 8.9 

supernodal 30 156.9 -6.048 4E-9 7E-9 7E-9 132,149 502,668 4.70E+6 5.24E+7 5.2 

3DsqrfootUBM 
multifrontal 23 721.3 -6.112 4E-10 4E-9 4E-9 289,728 856,320 2.83E+6 1.09E+8 31.4 

supernodal 25 451.2 -6.112 2E-10 2E-9 2E-9 289,728 856,320 2.83E+6 1.46E+8 18.0 

3DtunheadLBM 
multifrontal 0 70.1 0.000 2E-1 1E+0 1E+0 587,983 774,304 7.00E+6 2.03E+8 - 

supernodal 16 550.0 -22.334 2E-4 9E-5 1E-4 587,983 774,304 7.00E+6 2.55E+8 34.4 

3DtunheadUBM 
multifrontal 48 1925.7 -32.297 1E-8 3E-11 3E-11 454,879 1,342,528 4.43E+6 1.59E+8 40.1 
supernodal 42 983.6 -32.297 8E-7 1E-9 1E-9 454,879 1,342,528 4.43E+6 2.04E+8 23.4 

 

3.4.2 Matrix reordering 
While the AMD ordering performs satisfactorily for the two dimensional problems, the 

size of the factorisations in the three dimensional problems grows significantly. The 

graph partitioning ordering is used in MOSEK for all of the three-dimensional problems 

because of the fewer non-zeros in the factorisation. The two orderings were compared 

using the supernodal Cholesky solver and split free variables. The AMD ordering was 

computed by HSL MC50 while the ND ordering is computed by METIS [116]. The total 

solution time with the two solvers is shown in Figure 26 with the non-zero counts in 

Figure 27, and complete results are shown in Table 9. 

The number of iterations was very similar, except for the small and medium-sized lower 

bound tunnel heading problems, which showed large differences, although in opposite 

directions. An obvious difference, though, can be seen between the two-dimensional 

and three-dimensional problems in Figure 26, with the two-dimensional problems 

barely showing at the appropriate scale for the three-dimensional problems. The 
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difference in the solution time is greater than that between the non-zero counts shown in 

Figure 27 because the required floating point operations is approximately the sum of the 

square of the column (or row) counts, resulting in noticeably larger runtime differences 

than storage differences. Specifically, the number of non-zeros in the Cholesky factor 

ranged from 15% more to 180% more with the AMD ordering. On average, the AMD 

ordering led to over 60% larger factors than the ND ordering. For the large three 

dimensional problems, the range was 65% to 180% more non-zeros, with an average of 

110%. This led to the IPM with the AMD ordering running 1.0 to 7.7 ×  times slower, 

with an average of 2.5 ×  slower, than the ND ordering. For the large three dimensional 

problems, the minimum speedup was 2.4 ×  and the average 4.7 × . A performance 

profile of the results on the test is shown in Figure 28.While not all problems were 

solved to the desired tolerance, the only problems that did not finish with a primal 

infeasibility of less than 610−  were the lower bound tunnel headings. 

 

Figure 26. Comparison of the total solution time on the large problem set between the 
AMD and ND orderings. 
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Figure 27. Comparison of the number of non-zeros between the AMD and ND 
orderings. The last letter of the ordering indicates whether the problem is from the 

small (S), medium (M), or large (L) test set. 

 

Table 9. Comparison of AMD and ND ordering with supernodal Cholesky solver. 

  
S M L 

Problem Ordering nit tT nnz(L) nit tT nnz(L) nit tT nnz(L) 

2DfootingLB AMD 27 35.3 34,176,470  27 98.3 84,432,074  23 169.2 161,724,772  

ND 28 30.7 26,597,626  26 71.4 64,196,268  24 123.8 116,193,876  

2DfootingUB AMD 23 23.1 23,492,620  22 61.3 62,771,568  19 91.1 106,148,904  

ND 23 21.1 18,859,208  22 49.0 44,888,168  19 84.5 85,687,344  

2DtunnelLB AMD 36 14.5 10,262,970  41 41.0 25,075,799  41 82.5 50,116,055  

ND 36 14.5 8,764,682  41 39.0 20,923,476  41 73.8 38,946,661  

2DtunnelUB AMD 23 9.6 8,182,072  22 22.9 20,276,016  22 42.7 38,467,957  

ND 23 9.7 7,017,616  22 21.8 16,556,341  22 39.9 30,413,594  

3DsqrexcLB AMD 19 64.9 44,426,757  20 1013.1 305,968,704  24 5058.0 835,631,569  

ND 19 28.0 29,637,786  20 226.5 148,895,546  24 657.2 297,682,560  

3DsqrexcUB AMD 23 59.3 41,126,846  22 710.4 250,321,643  23 5350.1 961,216,058  

ND 22 32.7 26,818,343  22 258.8 139,726,394  23 1332.3 444,358,967  

3DsqrexcUB2 AMD 45 80.0 23,802,678  61 1194.5 153,633,398  55 6900.6 556,984,986  

ND 45 45.4 16,374,115  61 414.8 83,756,367  61 1942.3 270,925,139  

3DsqrfootLB AMD 22 76.6 44,029,048  26 608.8 177,254,045  24 7833.7 1,079,674,994  

ND 22 34.9 31,095,777  26 182.3 96,346,187  24 1636.0 503,500,942  

3DsqrfootUB AMD 22 71.9 44,031,780  23 405.8 145,811,716  25 5947.1 886,908,573  

ND 22 32.3 26,597,381  23 153.1 85,655,921  25 1721.1 467,076,084  

3DsqrfootUB2 AMD 24 26.7 14,846,231  25 128.9 52,368,502  25 1435.5 317,849,414  

ND 24 19.0 11,543,046  25 71.1 36,142,232  25 598.9 192,568,328  

3DtunheadLB AMD 27 149.9 69,603,801  24 837.7 260,683,703  22 12277.3 1,670,110,569  

ND 15 32.4 45,049,383  49 482.3 140,127,684  18 1617.7 733,578,413  

3DtunheadUB AMD 30 110.1 51,998,007  31 728.2 203,885,049  39 12998.9 1,284,339,958  
ND 30 63.5 38,770,079  31 293.4 123,913,631  35 3249.8 673,234,352  

 

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

N
on

-z
er

os
 in

 fa
ct

or
 

M
ill

io
ns

 

Problem 

AMDS

NDS

AMDM

NDM

AMDL

NDL



110 

 

Performance profiles will be used extensively in the following sections to visualise the 

relative effectiveness of different solution approaches. The performance profile was 

presented by Dolan and Moré [206] and show, for each solver, what percentage of 

problems is solved within α  of the best performing solver, from 0% to 100%. In this 

case, the profile shows that the ND ordering provides a significant performance benefit 

over the AMD ordering, easily outweighing the greater cost of computing the ND 

ordering. The profile indicates that two thirds of the problems solved using the AMD 

ordering require at least 2.7 ×  the runtime when using the ND ordering. 

 
Figure 28. Performance profile of IPM runtime by orderings. Both methods used 

supernodal Cholesky, no presolve, and free variables were split. 
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are either split as the difference between two linear variables, embedded in a second-

order cone, or the diagonal entries of the ( )1,1  block in the augmented equations 

associated with the free variables are perturbed with a small value ( 1010−  is used) to 

make the block non-singular. The cone embedding uses a single cone per variable, 

which is not the only way. For example, SeDuMi embeds all free variables in a single 

cone, but this means the ( )1,1  block in the augmented equations has a very large dense 

diagonal block when there is many free variables in the problem, and increases the 

density of the coefficient system in the Schur complement equation. Runtime 

comparisons are provided in Figure 29 and Figure 30, with complete results in Table 10, 

and the performance profile in Figure 31. 

Interestingly, Figure 29 shows quite similar performance in terms of the total solution 

time between the three methods across the small problem set, although the differences 

are magnified in the large problems shown in Figure 30. The regularised approach does 

not work for the 3DtunheadLB problems and has trouble on the medium and large 

versions of 3DsqrexcLB. Moreover, the regularised approach appears to struggle on the 

3DsqrexcUB problems also, where approximately one third of the variables are free 

variables, compared with around one sixth for the other two three-dimensional upper 

bound problems. The quadratic upper bound formulation of the square excavation does 

not present the same difficulty, however, with the regularised approach performing 

significantly better than splitting the variables or embedding them in a quadratic cone. 

Moreover, the regularised approach often outperforms the other two approaches when 

there is a small proportion of free variables, suggesting that it is likely to be the 

preferred approach if the number of free variables can be kept low or modified to be so. 

Embedding the free variables in a quadratic cone exhibits generally increases the 

required runtime and iterations taken to converge over the splitting of variables, with an 

average runtime average runtime of 1231.9s and 31.1 iterations on the large problems 

compared to 1089.8s and 28.4 iterations when splitting the free variables on the large 

problems. Table 10 shows the complete results across the three approaches. The 

columns are as previously described and ( )max pinf,dinf,relgapφ = . 
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The performance profile in Figure 31 supports the notion that the regularised approach 

is generally the fastest, but struggles on the problems with a high proportion of free 

variables. Splitting free variables performs satisfactorily compared with the 

regularisation approach, and consistently outperforms the quadratic cone embedding 

approach. 

 

Figure 29. Comparison of the total solution time on the small problem set between the 
three approaches to handling free variables considered. 

 
Figure 30. Comparison of the total solution time on the large problem set between the 

three approaches to handling free variables considered. 

 

 

 

0
10
20
30
40
50
60
70
80

T
ot

al
 so

lu
tio

n 
tim

e 
(s

) 

Problem 

lin

reg

soc

0
1,000
2,000
3,000
4,000
5,000
6,000

T
ot

al
 so

lu
tio

n 
tim

e 
(s

) 

Problem 

lin

reg

soc



113 

 

Table 10. Comparison of approaches to handle free variables. The three methods 
compared are the split into two linear variables (LIN), regularisation (REG), and 

embedding within a second-order cone (SOC). 

  
S M L 

Problem Method nit tT ϕ nit tT ϕ nit tT ϕ 

2DfootingLB 
lin 28 30.7 1E-08 26 71.4 3E-08 24 123.8 3E-08 

reg 28 30.5 1E-08 24 67.0 2E-08 21 110.4 3E-08 

soc 28 30.4 1E-08 25 69.3 5E-08 25 129.0 4E-08 

2DfootingUB 
lin 23 21.1 7E-09 22 49.0 8E-09 19 84.5 7E-09 

reg 24 22.0 7E-09 23 50.7 8E-09 19 84.0 8E-09 

soc 24 22.1 7E-09 23 51.0 8E-09 19 84.3 8E-09 

2DtunnelLB 
lin 36 14.5 9E-09 41 39.0 8E-09 41 73.8 8E-09 

reg 36 13.6 2E-07 33 30.1 2E-06 31 52.8 6E-05 

soc 40 17.3 8E-09 41 42.3 1E-08 41 79.1 8E-09 

2DtunnelUB 
lin 23 9.7 6E-09 22 21.8 9E-09 22 39.9 7E-09 

reg 24 9.2 7E-09 19 17.6 1E-07 25 41.7 6E-09 

soc 24 11.0 7E-09 24 25.7 6E-09 24 47.5 7E-09 

3DsqrexcLB 
lin 19 28.0 6E-09 20 226.5 9E-09 24 657.2 8E-09 

reg 20 29.4 1E-08 1 16.6 1E+00 1 38.1 1E+00 

soc 19 26.8 9E-09 19 213.9 8E-09 26 702.2 5E-09 

3DsqrexcUB 
lin 22 32.7 9E-09 22 258.8 7E-09 23 1332.3 7E-09 

reg 24 34.4 5E-09 32 358.1 1E-07 61 3427.8 5E-06 

soc 23 35.5 1E-08 23 274.4 5E-09 24 1341.4 1E-07 

3DsqrexcUB2 
lin 45 45.4 6E-09 61 414.8 5E-08 61 1942.3 9E-08 

reg 30 28.5 2E-07 30 199.4 2E-07 30 935.7 1E-07 

soc 51 53.0 6E-09 61 425.6 2E-08 61 1897.7 4E-07 

3DsqrfootLB 
lin 22 34.9 8E-09 26 182.3 3E-09 24 1636.0 1E-08 

reg 20 31.7 9E-09 22 154.2 6E-09 24 1632.4 9E-09 

soc 24 38.3 5E-09 27 185.2 9E-09 26 1729.2 8E-09 

3DsqrfootUB 
lin 22 32.3 6E-09 23 153.1 5E-09 25 1721.1 6E-09 

reg 19 27.7 6E-09 20 132.3 3E-09 22 1521.6 4E-09 

soc 24 35.8 4E-09 25 168.5 2E-09 27 1872.2 5E-09 

3DsqrfootUB2 
lin 24 19.0 7E-09 25 71.1 8E-09 25 598.9 6E-09 

reg 19 14.5 4E-09 19 53.1 6E-09 19 451.4 3E-09 

soc 30 23.6 5E-09 30 88.3 7E-09 33 739.2 6E-09 

3DtunheadLB 
lin 15 32.4 6E-05 49 482.3 2E-05 18 1617.7 3E-04 

reg 1 3.8 1E+00 1 14.1 1E+00 1 114.5 1E+00 

soc 22 50.9 6E-05 25 245.5 6E-04 13 1126.6 8E-04 

3DtunheadUB 
lin 30 63.5 9E-09 31 293.4 1E-08 35 3249.8 2E-08 
reg 29 60.7 9E-09 22 198.2 1E-05 32 3056.8 8E-09 
soc 33 71.1 1E-08 41 394.5 2E-08 54 5035.2 5E-08 
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Figure 31. Performance profile of IPM runtime by free variable approach. 

3.4.4 Presolving 
An important phase in solving optimisation problems arises before the solver algorithm 

begins. This presolve phase can often reduce solve times considerably [207]. Thus, 

much effort (see, for example, [73], [208], [209]) has been spent seeking approaches to 

automatically improve the problem formulation before attempting to solve the 

mathematical program. As a result, a wide range of cheap heuristics have been 

developed that sometimes result in a significant improvement in computational speed. 

This presolve often involves manipulation of the upper and lower bounds on each of the 

linear variables looking for fixed and implied free variables, and the elimination of free 

variables. Unfortunately, much of the work on LP presolving does not carry over to 

second-order cone and semidefinite cone based programming because of the difference 

introduced by the conic constraints. However, performance improvements can still be 

gained by using an effective presolve procedure. 

The three main components that benefit the solution of FELA problems are the 

elimination of free variables, the treatment of fixed variables subject to conic 
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constraints, and handling dense columns in the constraint matrix efficiently. While 

various other strategies may be employed, these do not appear to provide much payoff. 

A description of these presolve procedures is outlined below, including details on the 

efficient implementation of the methods. 

3.4.4.1 Eliminating free variables 
While most authors mention the difficulties posed by free variables in the FELA 

problem formulation, few provide beneficial methods of dealing with them. 

Makrodimopoulos and Martin [25] describe how the free variables may be eliminated 

from a lower bound formulation, but only achieve around 10% improvement in 

performance. This is likely to be a result of MOSEK being able to efficiently handle the 

free variables. In the following, an outline is given of the efficient elimination of some 

(possibly all) free variables from the problem before solving the optimisation problem 

using purely algebraic conditions. A direct comparison is then made between the solver 

performance with and without this presolve procedure. Note that a post-solve is also 

required if free variables are eliminated in order to return a solution suitable for 

interpretation of the results by the calling program. This matter involves a few cheap 

operations which are shown in Section 1.3.3. 

The common method for eliminating free variables consists of iteratively checking for 

columns in the constraint matrix associated with a free variable that has only one non-

zero in it; this is known as a column singleton. A column singleton associated with a 

free variable can be used as a pivot to eliminate one equation (the equation containing 

the non-zero in the singleton column) from the constraint matrix without causing any 

fill-in. Additionally, and perhaps more importantly with regards to the efficiency of the 

number of iterations of the IPM, the free variable is also eliminated from the problem. 

Other “tricks” involving concepts including doubleton equations (equations with just 

two non-zero coefficients), the removal of fixed variables, and sparsity increasing 

constraint equation manipulations [208], [209] can lead to columns associated with the 

free variables being reduced to singleton columns, allowing additional free variables to 

be eliminated from the problem without fill-in. Another approach used by some authors 

seeks to find a full rank row-set of as many free variables as possible on which it is 

possible to block-pivot without causing too much fill-in and eliminating as many free 
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variables as possible. Because it may not be possible to find a suitable sparsity-

preserving and stable block pivot for all free variables, the partitioning leads to 

 B BR N

N NR N

 
 
 

E E A
E E A

, 

where the row set B  contains the equations to be eliminated from the problem and the 

remaining rows are in the set N , BE  is the non-singular block pivot, the *RE  matrices 

contain the set of columns of the constraint matrix associated with free variables not 

being eliminated (possibly empty). This method was outlined by Mészáros [73], who 

used a Markowitz criterion with a maximum Markowitz count of four. This means that 

a free variable was only eliminated if one less than the number of entries in the pivot 

row, multiplied by one less than the number of entries in the pivot column, was less 

than or equal to four. Note that this approach does not consider the actual fill-in, but 

instead uses an upper bound on the fill-in as a heuristic. An alternative interpretation is 

that it minimises the number of updates to the active submatrix when the rank-one outer 

product update is made to the active submatrix upon eliminating the free variable. The 

use of linked lists provides a simple way to find the next pivot of lowest or low 

Markowitz-count subject to the stability threshold at each step [210]. The process 

continues until a suitable pivot can no longer be found. 

This approach can be modified to use an approximate minimum local fill-count at each 

step, similar to that outlined for the reordering of the Schur complement system in [115] 

(except that the ordering is not computed a priori in contrast with the static ordering for 

the SPD system). A limited number of columns are searched in order of increasing 

column count [211] for a pivot satisfying the stability threshold ( )maxij ja τ≥ × A  for 

some scalar [ ]0,1τ ∈  which produces a minimum fill score upon elimination of this 

pivot. The fill score is calculated as the amount of fill-in produced by using the pivot 

less the number of non-zeros remaining in the pivot column and pivot row in the active 

submatrix plus one (because the pivot occurs in both the row and the column). An 

efficient procedure for finding such a pivot checks for stability of the potential pivot, 

and then computes the amount of fill-in caused by the stable potential pivot. The fill-in 

can be computed by negating the row pointers in the CSR structure of the active 
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submatrix corresponding to a non-zero in the potential pivot column, and then 

comparing it with all the other columns containing an entry in the potential pivot row. 

In each of these columns, the amount of fill-in can be computed by scanning the column 

and keeping track of the number of common entries. The amount of fill-in in this 

column is the length of the potential pivot column less the number of common entries. 

At this point, it is also simple to check the number of entries that would exist in this 

column if the potential pivot were chosen. This is important for some problems if no 

method to handle “dense” columns (generally those columns which lead to high cost in 

forming and factorising the Schur complement system) in the constraint matrix is used 

and the Schur complement system is used to obtain the search direction. In such a case, 

it is possible to add an additional constraint on the pivot selection that limits the 

maximum growth of any column in the constraint matrix. Significant performance gains 

can be achieved by monitoring the progressive fill score, and stopping the fill-count 

computation as soon as it is greater than the maximum score allowed. After all of the 

columns have been checked, the fill score is then computed by subtracting the number 

of entries in the potential pivot row and potential pivot column and adding one. Note 

that if a potential pivot is found to be stable and exists on a singleton row or singleton 

column, it is chosen immediately, without further searching. After a pivot is chosen, the 

LU  factors of BE  are updated, as is the active submatrix. 

A less sophisticated but cheaper approach that avoids the use of the Markowitz table 

searches each free-variable column in some predetermined order, with a stable pivot 

chosen if its fill score is less than the maximum or it occurs on a singleton row or 

singleton column. To demonstrate the effectiveness of each approach, both the 

approximate minimum local fill-in and the static order minimum local fill-in schemes 

were used to eliminate as many free variables from each of the small test problems as 

possible, and then solved using Mix8 with the supernodal Cholesky solver. Note that the 

primal and dual objective constants are added to the objective function value computed 

in the IPM, and the primal objective function c  and constraint right-hand side b  are 

modified as shown in Section 1.3.3 
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3.4.4.2 Handling dense columns 
A column with a large number of non-zeros in the constraint matrix, relative to the other 

columns, leads to a considerably more dense Schur complement system than would be 

the case if the column did not contribute to the Schur complement system. For this 

reason, various approaches for reducing the impact of dense columns have been 

developed [212], [213]. The approach used here is based on Andersen’s [213] modified 

Schur complement method and is detailed below. 

Let DA  contain the dense columns of the constraint matrix, A , and the remaining 

columns be SA . If the ( )1,1  block of the augmented equations, 2−F  (including 

diagonal scaling for linear variables and perturbations for free variables along), is 

partitioned accordingly, then the system to be solved is  

 

2

2

T
D D D D

T
S S S S

D S

 −    
    − =    
         

F A x p
F A x p

A A y q
. 

Eliminating Sx  gives 

 
2

22

T
DDD D

T
S S SD S S S

−−

 −   
=     +    

pxF A
q A F pyA A F A

. 

This differs from Andersen’s approach in that 2
DF  need not be the identity matrix, 

indeed, it is not even assumed to be non-singular or contain any non-zero entries. This 

approach allows dense columns associated with free variables to be treated explicitly, 

without any perturbations or modification to a conic variable. In contrast, Andersen’s 

method will require any dense columns that are free variables to be treated by some 

method considering them as a conic variable, increasing the amount of work needed to 

be done and memory requirements, and introducing the difficulties known to be caused 

by splitting free variables. If 2T T
S S S

−=LL A F A  and y  is eliminated from the first block 

row, the resulting equation is 

 ( ) ( )2 1 1 2T T T
D D D D D D S S S

− − − − −− + = + +F A L L A x p A L L q A F p . 

This suggests the following steps compute the solution: 
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1. compute the Cholesky factorisation 2T T
S S

−=LL A F A ; 

2. solve D=LV A ; 

3. solve ( )2
S S S

−= +Lr q A F p ; 

4. solve ( ) ( )2 T T
D D D+ = − +F V V x p V r ; 

5. solve ( )T
D= −L y r Vx ; and 

6. solve 2 T
S S S S− = +F x p A y . 

From the above it is apparent that an additional solve with the triangular factor plus the 

solution with the coefficient system 2 T
D +F V V  is required. Note also that even if A  is 

of full row rank, SA  may not be and so there is no guarantee that the factorisation 

2T T
S S S

−=LL A F A  exists. Although Andersen [213] suggests using the method described 

by Stewart [205], it was found that this procedure was not necessary for the FELA test 

problems, in which there is no more than a single dense column as a result of the 

elimination of free variables, and no dense columns in the original constraint matrices 

are present. 

3.4.4.3 Eliminating fixed variables subject to a conic constraint 
A fixed variable arises from a row singleton in the constraint matrix. If the variable is a 

free variable, it may be substituted out of the problem immediately (see Section 

3.4.4.1). Similarly, linear variables may be eliminated if they are non-negative (if they 

are negative, the primal problem is infeasible). If, however, the fixed variable is part of 

a second-order cone constraint (or semidefinite constraint), then they may not be 

substituted out so easily. If the first variable associated with the k th second-order cone 

constraint is fixed, e.g. j ix b=  (that is, the j th variable has the only non-zero 

coefficient in the i th constraint and is in the k th second-order cone), there are three 

cases: 

• 0jx = , in which case all the other variables in the k th constraint must also be 

zero (by definition of the second-order cone), and so all of the values may be 

substituted out of the problem; 
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• 0jx ≠  and the optimal value of kx  lies on the boundary of the second-order 

cone; or 

• 0jx ≠  and the optimal value of kx  lies on the interior of the second-order cone. 

Because the values of the unfixed variables associated with the k th second-order cone 

are not known in the second and third cases, the variable may not be removed from the 

problem. Similar reasoning prevents the remaining variables from being removed if 

they are fixed. If the situation arises in which both the first variable and one of the other 

variables in the same cone are both fixed, then the variables may be “aggregated” and 

the cone size reduced by one for each aggregation [36]. For example, if the first variable 

of the k th cone 4jx = , and the third variable in the same cone 2 4jx + = . The variable 

2jx +  may be eliminated from the problem after setting 2 2
2 3j j jx x x +′ = − = , reducing the 

cone size by one [36].  

Andersen et al. [57] show that the fixed variables constrained by a second-order cone 

may be further exploited to reduce the computational effort required to compute the 

search direction. For each of the fixed variables, they may be easily eliminated from 

every other constraint. Then the fixed variables may be symmetrically permuted in the 

augmented form of the equations such that 

 

11 12 1 1

2 221 22

1 1

2 2

ˆ

ˆ

TT
T

− −     
     − − −        = = =                            

H H 0 I x p
x px H H A 0 pH A

P P P P
y qy qA 0 0 A 0 0
y qI 0 0 0

, 

where Â  are the constraints with no fixed variables (possibly containing dense 

columns), x  and y  are the unknowns, and p  and q  represent the right-hand side. From 

the fourth block equation, it is obvious that 1 2=x q . This can be substituted into the 

second block equation which can then be solved for 2x  and 1y : 

 2 2 21 222

1 1

ˆ

ˆ

T  +−    
=     

     

x p H qH A
y qA 0

. 

This may be reduced to the SPD form 
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 ( )1 1
22 1 1 22 2 21 2

ˆ ˆ T− −= + +AH A y q AH p H q  (3.1) 

to compute 1y , which can then be used to obtain 2x  as 

 ( )1
2 22 2 21 2 1

ˆ−= − + −x H p H q Ay . (3.2) 

Finally, 2y  can be found from 

 2 1 11 1 12 2= + +y p H x H x . (3.3) 

These operations may all be performed easily by making a few modifications and 

implementing some additional routines for the matrix-vector multiplies and solves 

involving the partitioned H . Some details are provided below. The partitioning of H  as 

 11 12 1 1 12

21 22 2 2 2

2
T

θ −       
= − +       

      

H H Q 0 w w
H H 0 Q w w

  

(where the Q  blocks are diagonal with entries 1± ), allows the inverse of 22H  to be 

easily obtained using the Sherman-Morrison-Woodbury formula, giving  

 1 2
22 2 2 2 2 2

2 2 2

2
1

T
Tθ− −  

= − − − 
H Q Q w w Q

w Q w
  (3.4) 

(note that 1
i i

−=Q Q  holds for any submatrix of a symmetric permutation of Q  for a 

second-order cone). This is needed for matrix-vector multiplication as well as 

construction of the Schur complement matrix. Both operations require the factor 

( ) 1

2 2 21 T −
− w Q w  of the right-hand side in (3.4), so it is useful to compute this once for 

each iteration. The matrix-vector multiplication is easily applied with the inverse by 

only treating those variables whose index is not that of a fixed variable. By maintaining 

a compressed list of unfixed variables in each cone (with a pointer to the start of a list of 

each cone’s unfixed variables, much like a CSR or CSC structure), it is trivial to 

perform the multiplication with the corresponding entries in 2w . The construction of 

the Schur complement matrix is simplified by only storing Â  (storing it in the 

conventional CSC structure), and scaling each outer-product associated with a fixed 

variable by the factor discussed above. Note that because the columns in Â  
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corresponding to the fixed variables are zero, no further modifications to the 

implementation of the construction of the Schur complement matrix is necessary. This 

does require the modification of each matrix-vector product involving the matrix A , 

which is easily performed with a list of the fixed variables (note that storing value of the 

fixed variable in the right-hand side vector b  removes the need to store the coefficients 

in the fixed constraints as they are all simply one). The multiplications with 21H  and 

[ ]11 12H H  are most naturally performed with a list of the fixed variables, which are 

already stored for the matrix-vector products. 

3.4.4.4 Presolve results 
The problem set was tested again with an initial check for fixed variables before 

attempting to eliminate as many free variables as possible and checking for dense 

columns. Note that in some cases, additional fixed variables were present after the 

elimination, but were not exploited. Marginal improvements could be expected by 

repeating the presolve process until no more fixed variables can be identified nor free 

variables eliminated. The free variable elimination restricted the fill-in to ensure that 

any single elimination would not increase the size of the effective constraint matrix, i.e. 

if a free variable has rn  other variables in its row and cn  other variables in it column in 

the active part of the constraint matrix, then elimination will be allowed if it results in 

no more than r cn n+  fill-in entries. The Markowitz-based search searched a maximum 

of one column with a suitable free variable for elimination, and the pivot stability 

criterion for potential pivot ija  used was ( )110 maxij ja a−≥ , where ja  is the j th 

column of A . A column was considered dense if it contained more than 5 ×  the average 

number of entries per column. The complete results of the presolve process are shown 

in Table 11 and the IPM results are shown in Table 12 alongside the results from 

Section 3.4.4.2 with split and regularised free variables for comparison. 

Presolving appears to reduce the number of iterations, the number of non-zeros in the 

Cholesky factor, and the total runtime when compared to both of the other approaches 

in the table. The iteration counts are shown in Figure 32 where the only problem in 

which the presolved approach does not converge with fewer iterations than either of the 

other approaches is on 3DtunheadLB, where it solves the problem to a smaller tolerance 
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than that of the split free variables. Figure 33 shows that the presolve approach does 

reduce the number of non-zeros in the Cholesky factor, but not significantly so given 

the reduction in the dimension of the linear system seen in Table 12. This is because the 

Gaussian elimination of the columns associated with free variables results in additional 

entries in the constraint matrix. But, because of the factorisations computation time 

being proportional to the square of the column counts, this leads to a more pronounced 

improvement in the runtime between the approaches as shown in Figure 34. 

On the large problems, the total time to solve all problems was 8617s with the presolve 

method and 13,077s without (split free variables). Note that the lower bound tunnel 

heading was solved to the desired accuracy using the presolve method, but was not by 

the other approaches. For the large three dimensional problems, except the 

3DtunheadLB problem (that was not solved to satisfactory tolerance without 

presolving), using a presolve method led to a 1.75×  speedup over the approach splitting 

free variables and without presolving. In many cases, presolving also led to a significant 

reduction in the size of the Cholesky factor and a consequent reduction in runtime over 

even the regularised free variable approach.  presents the performance profile and 

displays the clear benefit of presolving the problems in the test set. 

 

Figure 32. Comparison of the iteration count on the large problem set between the 
presolved problems and two approaches for handling free variables. 
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Figure 33. Comparison of the number on non-zeros in the factor on the large problem 
set between the presolved problems and two approaches for handling free variables. 

 

Figure 34. Comparison of the total solution time on the large problem set between the 
presolved problems and two approaches for handling free variables. 
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Table 11. Presolve results. 
Problem nF Eliminations Fixed variables identified Dense columns 

2DfootingLBS 280 280 0 0 

2DfootingLBM 420 420 0 0 

2DfootingLBL 560 560 0 0 

2DfootingUBS 980 980 0 0 

2DfootingUBM 1,470 1,470 0 0 

2DfootingUBL 1,960 1,960 0 0 

2DtunnelLBS 58,080 1,505 57,600 1 

2DtunnelLBM 130,320 2,257 129,600 1 
2DtunnelLBL 231,360 3,011 230,400 1 

2DtunnelUBS 77,480 51,404 76,480 1 

2DtunnelUBM 173,820 115,162 172,320 1 
2DtunnelUBL 308,560 204,710 306,560 1 

3DsqrexcLBS 43,008 43,007 0 1 

3DsqrexcLBM 145,152 145,151 0 1 
3DsqrexcLBL 271,488 271,487 0 1 

3DsqrexcUBS 119,280 119,279 0 1 

3DsqrexcUBM 399,708 399,707 0 1 
3DsqrexcUBL 944,064 944,063 0 1 

3DsqrexcUB2S 56,726 56,725 0 1 

3DsqrexcUB2M 184,470 184,469 0 1 
3DsqrexcUB2L 429,158 429,157 0 1 

3DsqrfootLBS 26,244 756 25,920 0 

3DsqrfootLBM 62,016 1,344 61,440 0 
3DsqrfootLBL 208,656 3,024 207,360 0 

3DsqrfootUBS 48,492 12,070 43,956 0 
3DsqrfootUBM 113,088 25,662 105,024 0 

3DsqrfootUBL 375,408 76,702 357,264 0 

3DsqrfootUB2S 29,094 3,149 25,920 0 
3DsqrfootUB2M 67,014 5,533 61,440 0 

3DsqrfootUB2L 219,750 12,305 207,360 0 

3DtunheadLBS 42,300 42,299 0 1 
3DtunheadLBM 99,920 99,919 0 1 

3DtunheadLBL 335,736 335,735 0 1 

3DtunheadUBS 77,400 77,399 0 1 
3DtunheadUBM 180,848 180,847 0 1 

3DtunheadUBL 600,984 600,983 0 1 
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Table 12. Comparison of presolve performance. Note that nnz(L) presents thousands of 
non-zeros. 

  
 S M L 

Problem Approach nit tT nnz(L) ϕ nit tT nnz(L) ϕ nit tT nnz(L) ϕ  

2DfootingLB 

lin 28 30.7 26,598 1E-8 26 71.4 64,196 3E-8 24 123.8 116,194 3E-8 

reg 28 30.5 26,598 1E-8 24 67 64,196 2E-8 21 110.4 116,194 3E-8 

preg 28 30 25,792 2E-8 26 71.4 63,350 3E-8 22 117.7 116,090 5E-8 

2DfootingUB 

lin 23 21.1 18,859 7E-9 22 49 44,888 8E-9 19 84.5 85,687 7E-9 

reg 24 22 18,859 7E-9 23 50.7 44,888 8E-9 19 84 85,687 8E-9 

preg 23 21 18,333 8E-9 22 49.6 45,089 8E-9 18 82.2 86,104 8E-9 

2DtunnelLB 

lin 36 14.5 8,765 9E-9 41 39 20,923 8E-9 41 73.8 38,947 8E-9 

reg 36 13.6 8,765 2E-7 33 30.1 20,923 2E-6 31 52.8 38,947 6E-5 

preg 42 14.2 7,859 9E-8 39 32.3 19,463 2E-7 33 53.3 36,573 3E-7 

2DtunnelUB 

lin 23 9.7 7,018 6E-9 22 21.8 16,556 9E-9 22 39.9 30,414 7E-9 

reg 24 9.2 7,018 7E-9 19 17.6 16,556 1E-7 25 41.7 30,414 6E-9 

preg 19 5.6 4,595 6E-9 18 13 11,482 8E-9 18 24.5 21,637 6E-9 

3DsqrexcLB 

lin 19 28 29,638 6E-9 20 226.5 148,896 9E-9 24 657.2 297,683 8E-9 

reg 20 29.4 29,638 1E-8 1 16.6 148,896 1E+0 1 38.1 297,683 1E+0 

preg 17 19.9 24,149 7E-9 17 164.1 126,627 9E-9 21 506.8 267,285 1E-8 

3DsqrexcUB 

lin 22 32.7 26,818 9E-9 22 258.8 139,726 7E-9 23 1332.3 444,359 7E-9 

reg 24 34.4 26,818 5E-9 32 358.1 139,726 1E-7 61 3427.8 444,359 5E-6 

preg 19 18.4 18,521 4E-9 19 158.7 100,836 5E-9 18 787.5 339,284 8E-9 

3DsqrexcUB2 

lin 45 45.4 16,374 6E-9 61 414.8 83,756 5E-8 61 1942.3 270,925 9E-8 

reg 30 28.5 16,374 2E-7 30 199.4 83,756 2E-7 30 935.7 270,925 1E-7 

preg 17 9.3 7,932 9E-9 16 55.6 42,613 6E-9 16 247.9 139,934 6E-9 

3DsqrfootLB 

lin 22 34.9 31,096 8E-9 26 182.3 96,346 3E-9 24 1636 503,501 1E-8 

reg 20 31.7 31,096 9E-9 22 154.2 96,346 6E-9 24 1632.4 503,501 9E-9 

preg 20 29.7 29,161 1E-8 24 174.9 95,396 4E-9 24 1588.3 485,720 6E-9 

3DsqrfootUB 

lin 22 32.3 26,597 6E-9 23 153.1 85,656 5E-9 25 1721.1 467,076 6E-9 

reg 19 27.7 26,597 6E-9 20 132.3 85,656 3E-9 22 1521.6 467,076 4E-9 

preg 19 21.1 20,768 3E-9 19 92.7 67,046 8E-9 21 1113.6 383,195 6E-9 

3DsqrfootUB2 

lin 24 19 11,543 7E-9 25 71.1 36,142 8E-9 25 598.9 192,568 6E-9 

reg 19 14.5 11,543 4E-9 19 53.1 36,142 6E-9 19 451.4 192,568 3E-9 

preg 19 11.2 8,930 6E-9 19 43.7 30,064 8E-9 19 378.7 168,067 5E-9 

3DtunheadLB 

lin 15 32.4 45,049 6E-5 49 482.3 140,128 2E-5 18 1617.7 733,578 3E-4 

reg 1 3.8 45,049 1E+0 1 14.1 140,128 1E+0 1 114.5 735,899 1E+0 

preg 22 48.3 43,493 6E-9 34 321 135,606 9E-9 25 2366.7 720,932 6E-9 

3DtunheadUB 
lin 30 63.5 38,770 9E-9 31 293.4 123,914 1E-8 35 3249.8 673,234 2E-8 
reg 29 60.7 38,770 9E-9 22 198.2 123,914 1E-5 32 3056.8 673,234 8E-9 

preg 20 32.9 31,340 7E-9 19 146 106,303 9E-9 17 1349.7 590,632 5E-9 
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Figure 35. Performance profile of IPM runtime with and without presolve. 

3.4.5Improvement summary 
The preceding sections make it clear that there is enormous benefit to be gained through 

using different orderings and solvers, appropriately dealing with free variables, and 

presolving the problem. The improved IPM implementation with the supernodal 

Cholesky is subsequently referred to as Mixup8. 

On the small problems alone, a 2 ×  speedup has been achieved overall from 525s with 

Mix8 to 262s with the ND ordering, supernodal Cholesky, and presolve. This was more 

pronounced on the medium problems, where the total solve time was reduced from 

23,275s to 1323s, a 17.5×  improvement, as well as solving 3DtunheadLB to a 

satisfactory tolerance. Note that the bulk of the time in the medium test set was spent by 

Mix8 in 3DsqrexcUB2, 15,941s. Without the 3DsqrexcUB2 and 3DtunheadLB 

problems, the improvement is from 7264s to 946s, or 7.7 ×  faster. 

The improved performance is now comparable to the better of the two commercial 

solvers tested, MOSEK. Figure 36 shows that the iteration counts are still slightly above 
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that of MOSEK whose average of 18.8 iterations per problem on the large set is just over 

two iterations better than that of Mixup8 with 21.0 iterations per problem, although the 

average is slightly distorted with 2DtunnelLBL taking a substantially greater number of 

iterations to converge. The complete results are shown in Table 13. The generally 

greater number of iterations also results in solutions with smaller infeasibilities, and yet 

is still completed in less time. The total solution time on the large problem set is shown 

in Figure 37. Both solvers converge to required tolerances or halt satisfactorily close to 

convergence except for MOSEK on the lower bound tunnel heading. Table 14 shows the 

total improvement over MOSEK on the entire test set, with a 1.7 ×  improvement on the 

large problem set, and the performance profile in Figure 38 shows the superiority of the 

improved implementation over MOSEK. These results show that there is benefit in 

developing a solver to ensure that the problems are solved with the greatest efficiency 

yet while the improvements have provided the capability to solve the test problems 

faster than MOSEK, there is still a distinct difference between the two-dimensional and 

three-dimensional problems. 

 

Figure 36. Comparison of the IPM iteration count between MOSEK and Mixup8. 
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Figure 37. Comparison of the total solution time on the large problem set between 
MOSEK and the presolved IPM with a supernodal solver using a nested dissection 

ordering. 

 

Table 13. Performance results compared with MOSEK. 

  S M L 
Problem Method nit tT ϕ nit tT ϕ nit tT ϕ 

2DfootingLB 
mosek 25 41.2 6E-09 20 90.0 8E-09 16 148.3 8E-09 

mixup8 28 30.0 2E-08 26 71.4 3E-08 22 117.7 5E-08 

2DfootingUB 
mosek 20 26.4 7E-09 20 62.3 5E-09 17 108.3 6E-09 

mixup8 23 21.0 8E-09 22 49.6 8E-09 18 82.2 8E-09 

2DtunnelLB 
mosek 19 14.5 5E-08 16 33.3 4E-08 15 57.8 5E-08 

mixup8 42 14.2 9E-08 39 32.3 2E-07 33 53.3 3E-07 

2DtunnelUB 
mosek 17 9.5 4E-08 15 22.5 2E-08 15 44.8 4E-08 

mixup8 19 5.6 6E-09 18 13.0 8E-09 18 24.5 6E-09 

3DsqrexcLB 
mosek 17 29.3 3E-08 16 245.8 3E-08 20 785.3 3E-08 

mixup8 17 19.9 7E-09 17 164.1 9E-09 21 506.8 1E-08 

3DsqrexcUB 
mosek 19 25.5 4E-08 18 197.8 3E-08 17 1108.8 4E-08 

mixup8 19 18.4 4E-09 19 158.7 5E-09 18 787.5 8E-09 

3DsqrexcUB2 
mosek 26 19.1 2E-07 23 110.4 1E-07 24 523.2 2E-07 

mixup8 17 9.3 9E-09 16 55.6 6E-09 16 247.9 6E-09 

3DsqrfootLB 
mosek 21 78.2 2E-08 21 375.3 3E-08 20 3432.3 3E-08 

mixup8 20 29.7 1E-08 24 174.9 4E-09 24 1588.3 6E-09 

3DsqrfootUB 
mosek 18 29.1 2E-08 21 179.2 2E-08 23 2030.6 3E-08 

mixup8 19 21.1 3E-09 19 92.7 8E-09 21 1113.6 6E-09 

3DsqrfootUB2 
mosek 19 15.0 3E-08 19 60.7 3E-08 18 556.1 3E-08 

mixup8 19 11.2 6E-09 19 43.7 8E-09 19 378.7 5E-09 

3DtunheadLB 
mosek 24 88.3 2E-05 28 414.5 2E-06 22 3482.4 1E-05 

mixup8 22 48.3 6E-09 34 321.0 9E-09 25 2366.7 6E-09 

3DtunheadUB 
mosek 20 46.1 4E-08 20 217.1 3E-08 19 2363.7 3E-08 
mixup8 20 32.9 7E-09 19 146.0 9E-09 17 1349.7 5E-09 
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Table 14. Total test set runtime. 

 mosek mixup8 mosek/mixup8 
Small 422.2 261.6 1.6 

Medium 2,008.9 1,323.1 1.5 
Large 14,641.6 8,616.8 1.7 

 

 
Figure 38. Performance profile of runtime by IPM solver with MOSEK and the improved 

implementation. 
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Chapter 4 Iterative solver approaches 

4.1 Solving the normal equations 
Because of the higher sensitivity to the problem and solution method parameters of 

iterative solvers compared with direct methods, it is expected that significant variation 

will be seen across the range of options. For this reason, it is important to systematically 

determine the parameters that lead to the most robust and efficient solution method. 

Among the options available, the choices may be split into three areas: options at the 

optimisation problem formulation and IPM level; preconditioning options; and choices 

around iterative solver parameters and methods. 

Questions faced in formulating and solving the optimisation problem that are likely to 

affect the system defining the search direction include: 

• What effect does the use of a presolve phase to exploit any opportunities to 

eliminate fixed and free variables have on the iterative solver’s performance? 

• Does the way in which remaining free variables are treated have an impact? 

• What effect does the step length relaxation factor, γ , have on the iterative 

solver’s performance? 

• In choosing among the available preconditioning methods, the main questions 

include: 

• How much variation is there between the different styles of preconditioner? 

• How sensitive are the preconditioners to parameter choices, and what parameters 

are optimal? 

• Do matrix permutations make a difference and which permutations are the most 

beneficial? 

• For the actual iterative solvers, the following questions need to be considered: 

• Is there a difference between the available iterative solvers? 
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• What tolerance on the residual norm is sufficient in solving each system, and 

should this tolerance be an absolute tolerance or and adaptive tolerance, 

changing as the IPM approaches a solution? 

An understanding of which choices or range of choices provide robust and efficient 

methods is sought. This is achieved in the following by first answering questions 

regarding the iterative solvers and then testing a range of preconditioning and ordering 

options before considering choices at the problem formulation and IPM level. This 

approach enables the number of possible permutations to be significantly reduced while 

indicating which choices are most beneficial. 

4.1.1 Test problems 
In order to focus more specifically on the performance of the preconditioner and 

iterative solver, individual systems have been extracted from the IPM using a direct 

solver. For each one of the small problems, three systems will be considered: the first 

system, the first system in which 410pρ −≤  and 410µ −≤ , and the first system 

encountered when 810pρ −≤  and 710µ −≤ . Note that these problems were solved using 

the supernodal Cholesky with METIS ordering, step length relaxation factor of 0.95, no 

free variables were eliminated, no fixed variables or dense columns were exploited, and 

each free variable was considered as two linear variables. The number of non-zeros and 

order of the Schur complement system are shown, along with an upper bound on the 

forward error from MA57 [214] and MATLAB condition estimate of each system in Table 

15. The same details are provided for the augmented equations in Table 16. The rank 

deficiency is as reported by MA57. 

As reported in Table 15 and Table 16, the conditioning of the linear system deteriorates 

in almost every problem the closer to convergence the IPM. The condition numbers on 

the third system for each problem indicate severely ill-conditioned matrices, in 

particular, the lower bound systems. Furthermore, it would not be unexpected for a 

direct solver to have difficulty in computing a stable factor that allows a relatively 

accurate solution to be obtained, with an upper bound on the forward error in many 

cases greater than 1.0. This difficulty was observed in Chapter 3 whereby optimisation 

packages considered robust and mature struggled to achieve convergence. 
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Table 15. Schur complement equation conditioning reported by MA57 and MATLAB. 

Problem Iteration 1ω  2ω  
1ωκ  

2ωκ  UB on Forward 
error 

Rank 
deficiency 

MATLAB condition 
estimate 

2DfootingLBS 
1 3E-16 0E+00 2E+09 0E+00 6E-07 0 4E+10 
5 3E-16 0E+00 1E+10 0E+00 4E-06 0 1E+11 

26 7E-16 2E-23 2E+17 1E+14 1E+02 0 2E+18 

2DfootingUBS 
1 4E-16 0E+00 1E+08 0E+00 5E-08 0 2E+07 
7 3E-16 0E+00 2E+10 0E+00 5E-06 0 3E+08 

23 4E-16 1E-23 9E+16 1E+09 3E+01 0 5E+13 

2DtunnelLBS 
1 3E-16 0E+00 2E+07 0E+00 6E-09 0 3E+07 
7 3E-16 0E+00 3E+09 0E+00 8E-07 0 3E+08 

35 3E-16 9E-24 6E+15 5E+12 2E+00 0 9E+15 

2DtunnelUBS 
1 3E-16 0E+00 1E+07 0E+00 4E-09 0 2E+07 
8 3E-16 0E+00 8E+09 0E+00 3E-06 0 2E+08 

22 4E-16 1E-23 5E+15 4E+10 2E+00 0 3E+12 

3DsqrexcLBS 
1 4E-16 0E+00 8E+08 0E+00 3E-07 0 1E+08 
9 4E-16 5E-24 4E+12 4E+04 1E-03 0 2E+10 

16 4E-16 9E-24 4E+16 3E+09 1E+01 0 1E+13 

3DsqrexcUBS 
1 5E-16 1E-23 2E+10 5E+02 1E-05 0 7E+08 

10 5E-16 9E-24 6E+13 8E+05 3E-02 0 3E+10 
19 5E-16 1E-23 3E+18 5E+10 2E+03 0 7E+13 

3DsqrexcUB2S 
1 6E-16 0E+00 3E+06 0E+00 2E-09 0 4E+06 
8 6E-16 0E+00 2E+10 0E+00 1E-05 0 3E+08 

38 7E-16 7E-24 3E+15 4E+08 2E+00 0 7E+12 

3DsqrfootLBS 
1 2E-16 2E-28 3E+16 5E+06 5E+00 0 1E+17 

11 3E-16 6E-28 3E+18 6E+08 8E+02 0 1E+19 
19 1E-15 3E-19 1E+18 4E+12 1E+03 0 7E+19 

3DsqrfootUBS 
1 3E-16 0E+00 5E+05 0E+00 2E-10 0 1E+04 

12 4E-16 0E+00 3E+07 0E+00 1E-08 0 5E+06 
20 5E-16 6E-24 2E+09 3E+05 1E-06 0 2E+10 

3DsqrfootUB2S 
1 3E-16 0E+00 9E+04 0E+00 3E-11 0 5E+03 

11 5E-16 0E+00 1E+06 0E+00 5E-10 0 2E+06 
21 5E-16 6E-25 4E+08 4E+00 2E-07 0 3E+10 

3DtunheadLBS 
1 8E-14 6E-19 1E+19 2E+14 1E+06 0 6E+18 

12 2E-14 2E-18 3E+18 2E+15 6E+04 0 6E+30 
21 6E-14 2E-19 3E+17 4E+15 2E+04 0 2E+28 

3DtunheadUBS 
1 4E-16 0E+00 3E+06 0E+00 1E-09 0 2E+06 

13 5E-16 1E-23 2E+11 1E+03 1E-04 0 1E+09 
25 5E-16 2E-23 1E+16 1E+10 5E+00 0 1E+13 

 

4.1.2 Choices related to the iterative solver 

4.1.2.1 Solver parameters 
The two parameters that are generally required to be passed to an iterative solver are the 

maximum number of iterations and the convergence tolerance. Obviously, only one of 

these two parameters will actually be used to terminate an iterative solver (except in the 

rare circumstance in which a method achieves convergence on the final iteration, 

although it may be argued that the method will actually only terminate because it 

converges or because it has reached the maximum number of iterations, but not both). 
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The convergence tolerance indicates the quality of the solution required by the 

application, while the maximum number of iterations indicates the maximum amount of 

work permissible to obtain the solution. In this case, we need the convergence threshold 

to ensure that sufficient progress will be made towards a solution of the optimisation 

problem, including reduction, or at least maintenance, of the primal and dual 

infeasibilities. The maximum number of iterations, however, must allow the solver to 

converge, if possible, while cutting off the solver in cases where it appears unlikely that 

the method will converge in a reasonable amount of time. 

Table 16. Augmented equation conditioning as reported by MA57. 
Problem Iteration w1 w2 Kw1 Kw2 UB on forward error Rank deficiency 

2DfootingLBS 

1 3E-16 2E-23 3E+05 2E+06 9E-11 0 
5 4E-16 1E-23 2E+06 3E-02 7E-10 0 
26 3E-16 5E-23 1E+05 8E+08 3E-11 0 

2DfootingUBS 
1 4E-16 2E-23 1E+04 2E+00 4E-12 0 
7 3E-16 0E+00 2E+05 6E+00 6E-11 0 
23 3E-16 6E-23 3E+07 3E+09 1E-08 0 

2DtunnelLBS 
1 3E-16 0E+00 3E+03 0E+00 1E-12 0 
7 3E-16 0E+00 4E+04 0E+00 1E-11 0 
35 3E-16 2E-23 1E+08 3E+08 5E-08 0 

2DtunnelUBS 
1 3E-16 6E-24 8E+03 1E+00 3E-12 0 
8 3E-16 0E+00 1E+05 0E+00 3E-11 0 
22 4E-16 2E-23 1E+07 1E+09 4E-09 0 

3DsqrexcLBS 
1 3E-16 2E-23 2E+05 8E+05 5E-11 0 
9 3E-16 0E+00 1E+06 0E+00 4E-10 0 
16 3E-16 0E+00 5E+07 0E+00 2E-08 0 

3DsqrexcUBS 
1 4E-16 4E-23 4E+05 3E+07 1E-10 0 
10 3E-16 0E+00 3E+07 0E+00 1E-08 0 
19 4E-16 3E-23 2E+10 6E+06 7E-06 0 

3DsqrexcUB2S 
1 4E-16 0E+00 6E+02 0E+00 2E-13 0 
8 3E-16 0E+00 2E+04 0E+00 6E-12 0 
38 5E-16 2E-23 8E+07 2E+08 4E-08 0 

3DsqrfootLBS 
1 2E-16 2E-17 6E+01 4E+18 7E+01 11 
11 3E-16 3E-15 1E+04 4E+17 1E+03 2 
19 3E-16 3E-16 2E+07 9E+17 3E+02 24 

3DsqrfootUBS 
1 3E-16 0E+00 1E+04 0E+00 4E-12 0 
12 3E-16 0E+00 3E+03 0E+00 9E-13 0 
20 3E-16 2E-23 9E+05 6E+08 3E-10 0 

3DsqrfootUB2S 
1 4E-16 0E+00 4E+03 0E+00 2E-12 0 
11 3E-16 0E+00 6E+02 0E+00 2E-13 0 
21 3E-16 1E-23 1E+03 5E+07 4E-13 0 

3DtunheadLBS 
1 3E-15 7E-17 5E+01 6E+18 4E+02 6 
12 4E-15 6E-14 4E+03 4E+17 3E+04 2 
21 7E-16 2E-14 6E+05 4E+16 6E+02 4 

3DtunheadUBS 
1 3E-16 8E-24 1E+03 2E+00 4E-13 0 
13 3E-16 0E+00 8E+04 0E+00 3E-11 0 
25 3E-16 3E-23 8E+07 8E+07 3E-08 0 
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 In the majority of the simulations to follow, an absolute convergence tolerance of 
81 10−×  is used with a maximum number of iterations of 20,000. Such a convergence 

tolerance is necessary for the later iterations in the IPM to ensure that the primal and 

dual infeasibility is not increased preventing convergence. 

4.1.3 Preconditioning the normal equations 

4.1.3.1 Comparing the symmetric Krylov subspace solvers 
When using a diagonal preconditioner, it is simple to explicitly precondition the linear 

system before passing it to the Krylov solver. This is achieved by taking the inverse of 

the square root of each diagonal entry, and performing row-scaling and column-scaling 

of the coefficient matrix such that the diagonal entries are one. Note that this affects 

both the solution vector and the right-hand-side. The approach is computed three steps: 
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In the case of the conjugate gradient solver, this saves n  multiplications per iteration 

(replacing the preconditioner step) and a vector update. It also reduces the storage 

requirements by a vector of length n . This scaling (resulting in unit values on the 

diagonal) maintains an approximately equal number of non-zeros in the incomplete 

factorisations as the IPM converges to a solution; without this scaling, the large number 

of small eigenvalues in the NT scaling matrix lead to many very large entries in the 

Schur complement system that do not get dropped in an incomplete-style 

preconditioner, leading to significantly increasing factorisation sizes in the latter 

iterations of the IPM. Interestingly, this approach converges in fewer iterations than 

when using the diagonal preconditioner at each iteration of a preconditioned Krylov 

solver. Thus, the following results for PCG, MINRES, and SymQMR are 

unpreconditioned algorithms with explicit preconditioning of the coefficient matrix 

before being passed to the Krylov solver. 

4.1.3.2 The effect of matrix permutations 
For direct methods, a sparsity-preserving ordering can have a significant impact on the 

relative performance of the method employed. This is because a poor ordering is likely 
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to result in many more non-zero entries in the factor as is clear from the comparison of 

available solvers in Section 3.4.2. In the case of incomplete factorisations, however, the 

effect of any reordering used may be much more subtle given that the quality of the 

incomplete factorisation may not necessarily depend upon a good sparsity-preserving 

ordering. 

The tests performed here use an absolute convergence tolerance in the residual norm of 
810−  with the PCG solver and the Ajiz-Jennings RIC1 incomplete factorisation as a 

preconditioner with a drop tolerance of 210−  and 410−  relative to the column diagonal 

entry. The four permutations compared are the reverse Cuthill-McKee (RCM) ordering, 

Sloan’s profile reducing ordering, approximate minimum degree (AMD) ordering, and a 

nested dissection (ND) ordering. The AMD and ND are the same as those tested for the 

direct methods in Section 3.4.2; HSL’s MC47 AMD and the METIS ND routines. The 

RCM implementation is that contained in SPARSEPAK [72], [215], while the Sloan 

ordering is the HSL routine MC40 [216]. Both of these codes use pseudo-peripheral 

nodes [72], instead of a “node which might be a node of minimum degree” as suggested 

for the original Cuthill-McKee ordering [117], as the starting node for each connected 

component in the graph of the matrix, but whereas RCM was designed to minimise the 

bandwidth of positive-definite finite element matrices, the Sloan ordering sought to 

minimise their profile. 

As stated above, the ordering need only be constructed once for each problem and so 

generally has a negligible impact on the overall performance in solving the problem. 

For completeness, however, the ordering construction times are included here in Table 

17. As expected, the RCM ordering is the fastest to construct and the nested dissection 

ordering the slowest for every problem in the small test set, the only exception being 

2DfootingLBS, in which Sloan’s ordering is considerably slower than all the other 

methods. Interestingly, the AMD ordering is no more than double the quick 

construction time of RCM, while Sloan’s ordering falls in between the AMD and ND 

method times.  

As can be seen in Table 18, with a drop threshold of 210τ −=  the number of non-zeros 

in the factor is quite similar across the different orderings, with the density, on average, 

increasing from the RCM ordering, the Sloan ordering, to the nested dissection, and 
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then the approximate minimum degree. The Sloan ordering is quite inconsistent, with 

15 systems of the 36 in which it has fewer non-zeros than RCM, but then has over two 

and a half times more entries on some other systems. For the systems considered here, 

the factorisation with the RCM ordering had between approximately 0.5×  to 2 ×  the 

non-zeros in the coefficient matrix. 

Table 17. Schur complement ordering time. These times are taken from the analysis of 
each problem with 210τ −= . 

Problem RCM Sloan ND AMD 
2DfootingLBS 0.08 0.39 2.03 0.11 
2DfootingUBS 0.05 0.23 1.33 0.07 
2DtunnelLBS 0.03 0.12 1.03 0.05 
2DtunnelUBS 0.03 0.11 0.71 0.04 
3DsqrexcLBS 0.08 2.10 1.27 0.10 
3DsqrexcUBS 0.05 0.53 1.60 0.08 

3DsqrexcUB2S 0.05 0.80 1.32 0.13 
3DsqrfootLBS 0.06 0.46 0.79 0.08 
3DsqrfootUBS 0.03 0.25 0.73 0.04 

3DsqrfootUB2S 0.04 0.25 0.59 0.07 
3DtunheadLBS 0.09 1.01 1.28 0.12 
3DtunheadUBS 0.06 0.58 1.19 0.10 

 

The number of iterations required to solve each system with the PCG solver is shown in 

Table 19. On average, the RCM ordering leads to the quickest preconditioner 

construction times, followed by the ND and then the AMD orderings, with the Sloan 

ordering suffering from considerable variance in the performance from on par with the 

RCM ordering to around 5×  slower. The number of iterations required to solve the 

systems, however, is almost the opposite of this situation. 

The number of iterations spent before achieving the convergence criterion 
8

2
10 ε−− ≤ =b Ax  (on the diagonally scaled system) is shown in Table 20. The 

maximum number of iterations was set at 20,000 , indicating that many of the solution 

attempts failed to achieve convergence. This was especially so for the last system tested 

in each problem, where only the two upper bounds on the square footing problem saw 

the solver reach convergence and only with the ND and AMD orderings. Interestingly, 

none of the approaches converged for any of the 3DtunheadLBS systems. This is likely 

to be due to the near rank-deficiency of the constraint matrix, which caused problems 

for standard direct Cholesky and multifrontal TLDL  factorisations. For the majority of 

the middle systems in each problem, the AMD ordering often led to the most effective 
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preconditioner, often followed by the ND ordering. The RCM and Sloan orderings 

varied from competitive up to 6 ×  worse than the AMD/ND-based preconditioners on 

some of the lower bound problems. The iteration count approximately corresponds to 

the time spent in the solver, with per iteration time generally similar across the 

compared approaches. The time per 100 iterations is shown in Figure 39 and is fairly 

consistent across the orderings. The performance profile of iteration counts is provided 

in Figure 40, and shows the AMD ordering to be the most effective ordering when used 

with RIC1. It should be noted that the performance profile of the iteration count is very 

similar to the efficiency profile. 

Table 18. Non-zeros in the RIC1 factorisation with 210τ −= . 
Problem Iteration RCM Sloan ND AMD 

2DfootingLBS 

1 5,351,560 5,021,559 7,232,403 7,332,105 

5 5,344,679 5,097,573 7,390,588 7,497,593 

26 6,093,082 5,632,803 7,947,492 8,712,208 

2DfootingUBS 

1 3,086,158 3,514,126 4,473,881 4,641,495 

7 3,091,083 3,664,354 4,914,935 5,208,697 

23 3,203,845 3,798,060 5,756,218 7,175,940 

2DtunnelLBS 

1 1,615,035 1,578,850 2,100,652 2,055,544 

7 2,081,038 1,961,639 2,811,970 2,846,691 

35 2,225,347 2,107,063 2,974,596 3,273,011 

2DtunnelUBS 

1 1,114,250 1,315,277 1,539,955 1,541,035 

8 1,561,960 3,977,735 2,097,501 2,222,921 

22 1,582,770 4,145,997 2,222,805 2,531,137 

3DsqrexcLBS 

1 2,382,344 2,218,662 2,796,623 2,912,654 

9 3,359,524 3,012,265 3,767,826 4,055,837 

16 3,341,677 3,008,978 3,742,613 4,051,321 

3DsqrexcUBS 

1 1,157,530 1,188,779 1,389,075 1,434,230 

10 1,674,244 2,497,296 2,163,265 2,331,207 

19 1,708,513 2,601,577 2,254,724 2,478,762 

3DsqrexcUB2S 

1 931,614 975,751 956,892 959,317 

8 1,786,814 1,837,004 1,699,006 1,744,273 

38 1,914,976 1,938,824 1,807,734 1,923,425 

3DsqrfootLBS 

1 2,274,027 2,177,695 2,814,157 2,918,339 

11 2,768,058 2,686,452 3,464,683 3,623,474 

19 2,789,795 2,713,795 3,518,760 3,712,695 

3DsqrfootUBS 

1 1,058,662 1,141,424 1,334,937 1,391,460 

12 1,452,138 2,107,675 1,754,673 1,839,161 

20 1,478,222 2,238,431 1,817,334 1,933,840 

3DsqrfootUB2S 

1 968,700 882,465 988,047 989,937 

11 1,681,667 1,439,689 1,549,504 1,562,729 

21 1,742,187 1,462,455 1,571,703 1,589,830 

3DtunheadLBS 

1 4,096,957 6,471,163 4,852,909 4,909,300 

12 4,853,125 10,167,924 6,040,053 6,485,309 

21 4,986,376 11,605,757 6,148,181 6,721,038 

3DtunheadUBS 
1 1,904,763 2,300,756 2,217,165 2,289,268 

13 2,230,723 3,704,995 2,635,020 2,776,475 
25 2,302,339 4,349,070 2,886,347 3,189,039 

 



139 

 

Table 19. RIC1 preconditioner construction time with 210τ −= . 
Problem Iteration RCM Sloan ND AMD 

2DfootingLBS 

1 0.38 0.40 0.52 0.60 

5 0.38 0.40 0.53 0.59 

26 0.46 0.46 0.59 0.84 

2DfootingUBS 

1 0.20 0.20 0.31 0.35 

7 0.20 0.21 0.33 0.40 

23 0.21 0.23 0.40 0.62 

2DtunnelLBS 

1 0.12 0.13 0.16 0.17 

7 0.14 0.14 0.20 0.22 

35 0.16 0.16 0.21 0.28 

2DtunnelUBS 

1 0.09 0.10 0.12 0.13 

8 0.10 0.46 0.14 0.18 

22 0.10 0.49 0.15 0.20 

3DsqrexcLBS 

1 0.29 0.22 0.30 0.35 

9 0.41 0.33 0.42 0.53 

16 0.39 0.32 0.42 0.54 

3DsqrexcUBS 

1 0.13 0.16 0.16 0.19 

10 0.17 0.46 0.23 0.29 

19 0.17 0.48 0.24 0.31 

3DsqrexcUB2S 

1 0.16 0.24 0.17 0.17 

8 0.28 0.53 0.24 0.26 

38 0.42 0.60 0.25 0.29 

3DsqrfootLBS 

1 0.34 0.23 0.51 0.34 

11 0.28 0.26 0.36 0.42 

19 0.29 0.27 0.37 0.43 

3DsqrfootUBS 

1 0.12 0.13 0.16 0.18 

12 0.14 0.31 0.18 0.21 

20 0.14 0.33 0.18 0.23 

3DsqrfootUB2S 

1 0.17 0.15 0.17 0.16 

11 0.26 0.18 0.19 0.20 

21 0.27 0.18 0.20 0.21 

3DtunheadLBS 

1 0.58 0.93 0.69 0.58 

12 0.51 1.56 0.65 0.78 

21 0.53 1.84 0.66 0.89 

3DtunheadUBS 
1 0.19 0.34 0.23 0.29 

13 0.21 0.61 0.25 0.33 
25 0.21 0.70 0.28 0.39 

 

The behaviour seen for the low-fill factorisations is quite different to the higher-fill 

preconditioners. Reducing the drop tolerance to 410τ −=  significantly increases the 

number of fill-in entries that are kept in the factorisation process and consequently 

significantly increases the time required to construct the preconditioner. This is usually 

offset by a reduction in the number of iterations required to achieve convergence in the 

solve phase. The number of non-zeros in the factorisation with the reduced drop 

tolerance is shown in Table 21. For the second two systems in each problem, the RIC1 

factorisation with the AMD ordering achieves up to a 50% reduction in the size of the 
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factor over the MOSEK Cholesky factorisation. Many problems see approximately the 

same number of entries comparing the direct method and the incomplete factorisation, 

and for the 3DsqrexcUB2 systems, the incomplete factorisation with all orderings 

significantly underperforms the direct method with 25% to 14 ×  more entries than the 

seven million entries in MOSEK’s full factorisation. This is possibly because of the 

significant savings achieved by eliminating free variables, avoiding dense columns, and 

exploiting fixed variables. 

The much greater size of the factors also incurs a significantly greater construction time 

cost, as can be seen in Table 22. Consistent with the amount of fill-in noted previously, 

these times are not competitive with the factorisation times of the direct methods in the 

high-performance conic program software packages. 
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Table 20. Iterations required with RIC1 preconditioned CG ( 210τ −=  and 810ε −= ). † 
indicates convergence did not occur within the maximum 20,000 iterations. 

Problem Iteration RCM Sloan ND AMD 

2DfootingLBS 

1 † † 17,578 15,592 

5 † † 13,415 15,347 

26 † † † † 

2DfootingUBS 

1 1,014 640 792 755 

7 1,134 721 871 866 

23 † † † † 

2DtunnelLBS 

1 2,329 2,058 1,005 520 

7 3,596 3,139 1,513 1,001 

35 † † † † 

2DtunnelUBS 

1 346 389 345 304 

8 701 1,520 734 528 

22 † † † † 

3DsqrexcLBS 

1 3,044 1,563 1,298 1,295 

9 † 8,811 6,317 3,258 

16 † † † † 

3DsqrexcUBS 

1 1,520 2,839 1,526 1,375 

10 3,463 10,042 3,396 2,773 

19 † † † † 

3DsqrexcUB2S 

1 242 804 294 147 

8 1,335 3,724 1,575 946 

38 † † † † 

3DsqrfootLBS 

1 240 197 173 160 

11 † † † † 

19 † † † † 

3DsqrfootUBS 

1 79 88 87 84 

12 440 792 491 402 

20 15,688  17,793 14,081 

3DsqrfootUB2S 

1 61 58 56 52 

11 595 439 385 306 

21 † 18,202 17,768 14,079 

3DtunheadLBS 

1 † † † † 

12 † † † † 

21 † † † † 

3DtunheadUBS 
1 202 392 184 153 

13 2,090 5,766 1,685 990 
25 † † † † 

 



142 

 

 
Figure 39. Time per 100 iterations with RIC1 ( 210τ −= ) preconditioned CG. 

 

 
Figure 40. Performance profile of iteration counts by ordering method with RIC (with 

210τ −= ). 
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Table 21. Non-zeros in the RIC1 factorisation with 410τ −= . 
Problem Iteration RCM Sloan ND AMD 

2DfootingLBS 

1 33,692,140 27,168,805 15,655,565 18,257,763 

5 33,762,490 28,453,869 16,054,870 19,015,901 

26 48,636,953 44,601,271 17,365,679 22,775,499 

2DfootingUBS 

1 15,175,693 13,007,502 10,398,601 12,097,548 

7 15,309,907 13,440,530 11,156,000 13,717,719 

23 20,170,032 17,654,841 11,975,128 16,737,184 

2DtunnelLBS 

1 8,840,380 7,596,094 4,461,745 4,881,983 

7 12,609,642 10,155,077 5,154,352 5,901,792 

35 16,149,373 13,741,086 5,159,112 6,197,963 

2DtunnelUBS 

1 5,343,264 4,377,259 3,397,486 3,454,875 

8 7,174,963 76,738,405 3,972,181 4,155,104 

22 8,146,368 79,522,252 3,953,276 4,247,076 

3DsqrexcLBS 

1 24,669,271 18,630,509 13,374,402 12,500,731 

9 46,325,896 34,091,946 17,222,833 22,932,096 

16 46,037,355 34,751,389 16,462,910 22,486,943 

3DsqrexcUBS 

1 9,214,213 23,161,388 8,405,736 7,889,490 

10 15,749,067 104,673,027 12,102,548 14,221,679 

19 17,138,959 113,094,148 12,135,964 15,586,904 

3DsqrexcUB2S 

1 8,563,275 36,005,597 6,925,040 6,516,542 

8 18,062,951 100,841,446 8,871,473 10,543,303 

38 18,838,845 98,254,858 8,636,873 11,237,777 

3DsqrfootLBS 

1 22,880,118 18,211,879 13,843,980 12,185,233 

11 28,130,231 23,447,179 16,347,371 15,724,039 

19 27,101,576 23,324,930 16,186,892 16,077,724 

3DsqrfootUBS 

1 8,866,821 9,748,974 8,709,581 8,285,553 

12 10,387,000 47,030,545 9,817,532 9,749,364 

20 10,275,326 52,277,929 9,663,466 9,829,626 

3DsqrfootUB2S 

1 6,730,887 6,578,043 4,662,536 4,472,196 

11 12,128,029 8,537,004 5,980,154 6,166,816 

21 12,807,654 8,781,651 5,884,983 6,307,611 

3DtunheadLBS 

1 43,217,352 92,280,177 22,985,628 22,626,345 

12 57,267,713 213,969,882 27,467,599 30,964,250 

21 61,267,081 313,090,153 27,127,675 31,813,138 

3DtunheadUBS 
1 14,246,984 41,270,583 11,824,650 11,616,517 

13 14,884,890 91,538,263 13,533,102 14,119,504 
25 15,340,515 123,106,100 15,557,591 18,815,249 
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Table 22. RIC1 preconditioner construction time with 410τ −= . 
Problem Iteration RCM Sloan ND AMD 

2DfootingLBS 

1 4.06 2.95 1.89 2.97 

5 4.04 3.24 2.05 3.37 

26 6.86 6.40 2.92 6.10 

2DfootingUBS 

1 1.40 1.05 1.01 1.49 

7 1.43 1.12 1.18 2.07 

23 2.34 1.81 1.50 4.01 

2DtunnelLBS 

1 0.87 0.72 0.41 0.57 

7 1.27 1.00 0.50 0.78 

35 1.97 1.70 0.52 0.90 

2DtunnelUBS 

1 0.49 0.36 0.30 0.31 

8 0.67 48.09 0.35 0.40 

22 0.75 53.57 0.35 0.42 

3DsqrexcLBS 

1 6.73 4.49 4.10 4.85 

9 18.86 15.55 7.64 23.37 

16 18.96 16.96 7.13 22.37 

3DsqrexcUBS 

1 1.87 17.28 1.91 1.86 

10 4.20 119.60 4.28 8.36 

19 4.67 136.60 4.34 10.85 

3DsqrexcUB2S 

1 2.50 40.26 2.25 2.30 

8 7.89 182.00 3.81 6.67 

38 8.75 189.10 3.62 7.74 

3DsqrfootLBS 

1 7.51 3.88 7.52 4.49 

11 7.23 5.67 6.75 8.22 

19 6.91 5.76 6.76 8.91 

3DsqrfootUBS 

1 1.70 1.97 2.43 2.26 

12 1.85 36.89 3.01 3.09 

20 1.83 44.09 2.89 3.16 

3DsqrfootUB2S 

1 1.84 1.88 1.59 1.51 

11 3.40 2.47 2.02 2.36 

21 3.81 2.73 2.00 2.52 

3DtunheadLBS 

1 14.94 61.00 10.63 9.68 

12 17.41 309.40 12.10 23.32 

21 20.41 765.90 11.92 26.01 

3DtunheadUBS 
1 2.50 20.67 2.68 2.76 

13 2.59 81.90 3.58 4.26 
25 2.74 138.40 5.25 9.82 

 

As expected, the number of iterations taken to convergence is greatly reduced by the 

much more accurate preconditioner. The iteration counts, again limited to 20,000, are 

shown in Table 23. Importantly, more of the systems were solved to tolerance with all 

orderings, although some of the lower bound systems were still unable to be solved with 

the AMD and ND-based preconditioners which achieved convergence on 30 of the 36 

systems tested. The RCM and Sloan orderings are clearly outperformed in their 

preconditioning effectiveness as well as the quality of the sparsity-preservation in the 

more dense factorisations. The RCM ordering-based preconditioner solved 25 systems, 

while the Sloan ordering-based preconditioner solved only 23. In all cases, the 
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factorisation with the AMD ordering outperforms the ND ordering-based factorisation. 

This difference was significant for some systems, indicating that the AMD ordering was 

unquestionably the most robust choice among the options considered for the systems 

tested with the lower drop tolerance. The time per 100 iterations is displayed in Figure 

41, showing the effect of the large number of non-zeros in the preconditioner. Similar to 

RIC1 with 210τ −= , the performance profile of the iteration counts in Figure 42 shows 

AMD to be the ordering with the highest likelihood of providing an ordering to produce 

an incomplete factorisation preconditioner among the orderings tested. 

These results make it clear that to obtain the search direction with an iterative solver in 

the later iterations of the IPM, more accurate preconditioners must be constructed. If 

one is to construct these more dense factorisations, then the banded preconditioners are 

not suitable, necessitating a choice between the ND and AMD orderings. While the ND 

ordering resulted in fewer non-zeros in the factorisation and often faster construction 

times, the effectiveness of the preconditioner was clearly inferior to the AMD-based 

preconditioner. Following these results, all incomplete Cholesky factorisations in the 

study use the AMD ordering. 
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Table 23. Iterations required with RIC1 preconditioned CG ( 410τ −=  and 810ε −= ). † 
indicates convergence did not occur within the maximum 20,000 iterations. 

Problem Iteration RCM Sloan ND AMD 

2DfootingLBS 

1 9,202 5,942 1,118 412 

5 5,535 3,671 828 357 

26 † † † † 

2DfootingUBS 

1 176 143 63 62 

7 202 170 74 71 

23 † † 11,401 3,708 

2DtunnelLBS 

1 473 362 88 19 

7 750 604 89 19 

35 † † † † 

2DtunnelUBS 

1 67 62 23 17 

8 157 388 39 18 

22 19,472 † 4,442 1,700 

3DsqrexcLBS 

1 738 253 102 37 

9 4,740 1,382 312 92 

16 † † 11,432 3,904 

3DsqrexcUBS 

1 485 2,656 192 103 

10 1,256 7,401 404 256 

19 † † 9,707 6,566 

3DsqrexcUB2S 

1 110 507 46 18 

8 500 1,951 111 63 

38 † † 6,923 2,526 

3DsqrfootLBS 

1 47 38 17 13 

11 † † 57 39 

19 † † † † 

3DsqrfootUBS 

1 19 22 15 15 

12 94 239 52 36 

20 3,137 8,473 1,646 869 

3DsqrfootUB2S 

1 11 13 8 8 

11 72 63 20 12 

21 2,718 3,400 968 196 

3DtunheadLBS 

1 † † † † 

12 † † † † 

21 † † † † 

3DtunheadUBS 
1 53 170 28 22 

13 499 1,958 181 63 
25 19,403 20,000 6,825 1,725 
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Figure 41. Time per 100 iterations with RIC1 ( 410τ −=  ) preconditioned CG. 

 
Figure 42. Performance profile of iteration counts by ordering method with RIC1 (

410τ −= ). Note that the RCM and Sloan ordering profiles extend beyond an Alpha value 
of 25 but are not shown. 
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4.1.3.3 Incomplete factorisation comparison 
Incomplete Cholesky factorisations are the most common form of preconditioners for 

SPD systems [78]. Because of their popularity, many developments have been made 

under the incomplete Cholesky umbrella. The variants tested here were a dual-threshold 

incomplete Cholesky, ICTP, that controls fill through both a drop tolerance and fill-

control, a robust incomplete Cholesky, RIC1, by Ajiz and Jennings [217] that ensures 

the incomplete factor exists for any SPD system, and a second order stabilised 

incomplete Cholesky, RIC2S, by Kaporin [218]. 

In order to allow a direct comparison between the effectiveness of the different 

approaches, these three incomplete factorisation methods were all implemented based 

on the left-looking Cholesky factorisation described by Davis [85]. These 

implementations were then compared against well-known codes from the HSL to 

measure their effectiveness against high performance solvers. Because of the difficulty 

in factorising the systems which define the search direction in the IPM (see Section 

3.4.1 for a discussion on computing the full Cholesky factor), it was essential to use a 

diagonal shift framework to ensure that an incomplete factor could be computed. This 

and a general outline of the incomplete Cholesky factorisation method used are 

described next. 

4.1.3.3.1 Implementation of the incomplete factorisations 
In order to obtain the most efficient preconditioner construction and iterative solution 

process for each linear system, the implementation details of the various incomplete 

factorisation algorithms are crucial. The implementation of these algorithms also 

provides a more direct comparison between the different approaches, as opposed to 

comparing solvers from available libraries. The incomplete factorisation methods 

implemented include a conventional incomplete Cholesky factorisation, the Ajiz-

Jennings robust incomplete factorisation [217], and Kaporin’s second-order stabilised 

robust incomplete factorisation [218]. Following Benzi and Tůma [219], we label these 

methods ICT, RIC1, and RIC2S, respectively. ICT is implemented with fill-control and 

threshold dropping, while RIC1 and RIC2S follow the algorithms provided by Kaporin 

[218], except that in sparsifying the row accumulator vector in RIC2S, ζ  is set to 

j i jv d d  instead of j jv d  (this is a correction, see footnote on p. 392 in [219]). 
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The implementations also compute L  one column at a time as opposed to one row at a 

time described by Kaporin [218]. All three methods are based on the same column-

oriented left-looking sparse Cholesky factorisation in which the columns of L  are 

stored in a CSC structure as they are computed using the concepts from Davis’s up-

looking Cholesky factorisation described in Reference [85]. The basic algorithm is 

shown below. 

( ) ( )
( )

( )
( )
( )

, 1, ,

1: 0 ! Initialise header pointers for linked lists
for 1,
    :,  ! Scatter the th column of 

     ! For each entry in the th row

    do while 0
        ! Column  has

i i i i n

n
k n

k k

j k k

j
j

= ∀ =

=

=

=

=

≠

d A

head

v A A

head



( ) ( )
( )

 an entry in row 
        : , 1: ,

        
        ! Update linked list for next entry in column 
        
    end do
    ! Perform any dropping, and sort column entries

    

k
k j k n j

jnext j
j

j jnext

k

= − × +

=

=

v v L L

next

L ( ) ( )
( ) ( )
( ) ( ) ( )2

,

    k 1: n, ,

    1: : 1: 1: ,
    ! Update  and  with first off-diagonal entry in column  of 
end do

k k

k k k

k n k n k n k
k

=

+ =

+ = + − +

d

L v L

d d L
next head L

 

Algorithm 1 - Left-looking incomplete Cholesky framework. 

A linked list is used to allow the partially computed factor to be accessed by row which 

is necessary in the update step. The linked list comprises three n -vectors, only two of 

which are shown in the outline above; head  holds the head of the linked list and next  

points to the next entry in the linked list. The third vector holds a pointer to the location 

in the row index and value arrays for L , so that ( ): ,k n kL  may be easily accessed if 

the column entries are sorted. This pointer vector is initialised for each column in the 

last line before the end of the main loop by checking whether there are any off-diagonal 
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entries in the k th column of L , and, if there is, setting the pointer vector to the location 

of the first sub-diagonal in column k  in the CSC structure for L , and adding the 

column to the head of the linked list for the row containing this entry. Modifying the 

linked list is performed similarly after the update by incrementing the pointer vector by 

one position to the next entry in the column (the columns are sorted as described next) 

and inserting the column at the head of the linked list associated with the row index of 

that next entry. For RIC2S, the linked list is used for entries in both L  and TR  (where 
TR  is the strictly lower triangular matrix containing the entries discarded after the 

factorisation finishes). The column index is simply negated to indicate that the entry in 

row k  is an entry of TR . The initialisation and update for the linked lists must also 

check entries in both L  and TR  to determine which holds the next off-diagonal entry in 

the column. 

Because the sparsity pattern is not known beforehand for the incomplete factorisations, 

a flag  vector is maintained that will have the i th component set to k  if ( )iv  will be 

the non-zero entry corresponding to ( ),i kL . If fill-in is encountered in row i , ( )iflag  

is set to k  and ( )iv  is initialised. The use of the flag  vector avoids checking a floating 

point number for equality with zero and any associated duplication of entries which 

have cancelled. It also avoids the need to zero out the accumulation vectors after each 

column has been computed. The row indices are held in unordered form during the 

update, with the threshold dropping being applied after the update and then the column 

is sorted in order of increasing row indices using quicksort. If fill-control is being used, 

then only the fill-control parameter times the number of non-zero entries in the lower 

triangular part of the k th column of A  are stored; these entries are found using 

quicksplit (described by Saad in his implementation details for ILUT [136]) before 

being ordered with quicksort. After the dropping and sorting is performed, the diagonal 

entry is first checked for non-positivity. If the entry is no longer positive, the 

factorisation halts, and then restarted after performing a diagonal shift so that 

( ): diagα= +A A A  as suggested by Manteuffel [220] or : β= +A A I . In all cases the 

second approach with β  was found to provide better performance and was used as 

follows: 
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1. Set β  to zero and attempt to construct the incomplete factor. If successful, exit. 

2. If β  is zero, then set it to a small value such as 1210−  or 1610− , otherwise set β  

to its square root. 

3. Return to step 1. 

This process is modified slightly such that if the incomplete factorisation fails around a 

similar pivot in consecutive attempts, then the square root is taken twice, i.e. 4:β β= . 

4.1.3.3.2 Incomplete Cholesky 
The ICTP preconditioner was tested with a range of drop tolerances from 210τ −=  to 

410−  and a fill control from 20p =  to 80. In addition, ICTP was tested without a fill 

control. This meant that whenever the factorisation needed more space, it attempted to 

allocate memory and transfer the previously computed portion of the preconditioner. 

This approach did not fail on any of the problems tested, but is likely to require 

modification if the initial allocation is too small when solving very large systems with a 

small drop tolerance. The performance profile comparing the parameter settings is 

shown in Figure 44. 

Clearly, introducing a fill control strongly affects the effectiveness of the 

preconditioner. The fill control does significantly impact the preconditioner with 
310τ −=  until p  is reduced to 20, and none of the fill control values has an impact 

when 210τ −= . As expected, the use of fill control does not result in an improvement in 

any case. Furthermore, it appears that rather than introducing a fill control to reduce the 

number of entries in the factorisation one should increase the drop tolerance. For 

example, rather than introducing a fill control of 40 to limit the number of entries in the 

preconditioner with 410τ −= , increasing 310τ −=  will generally result in fewer entries, 

faster factorisation time, and a more effective preconditioner, thus dominating the 

smaller drop threshold with a fill control. 
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Figure 43. Performance profile of efficiency by ICTP parameter choice. 

 
Figure 44. Performance profile of factor time plus 3× solve time by ICTP parameter 

choice. 
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The performance profile of efficiency is given in Figure 43 and the runtime in Figure 

44, with each preconditioners drop tolerance shown with the prefix t and the fill control 

with a prefix p. The figures show that building the preconditioner with 310τ −=  leads to 

better performance than with either the higher or lower drop tolerance for more than 

50% of the problems tested. This suggests that an optimal tradeoff between 

preconditioner accuracy and fill-in exists, but that as the IPM approaches a solution it is 

likely to be beneficial to reduce the drop tolerance to increase the effectiveness of the 

preconditioner. 

4.1.3.3.3 Robust incomplete Cholesky 
The RIC1 method differs from the ICTP solver in that the drop tolerance of 310−  does 

not appear to hold any advantage over the lower value of 410−  for any of the problems 

tested as seen in the performance profile of expected per IPM iteration runtime in Figure 

46, which includes three solves and the factorisation. This difference lies in the increase 

of the diagonal perturbations as more entries are dropped, reducing the effectiveness of 

the preconditioner. 

It should be noted that not all of the systems tested required diagonal modifications to 

ensure the existence of the incomplete factor, yet the RIC1 solver has no way of 

exploiting this. Consequently, the RIC1 solver operates at a significant disadvantage to 

the ICTP solver on any system in which the incomplete factor exists without modifying 

the diagonal. Furthermore, because RIC1 modifies the diagonal whenever an entry is 

dropped, the more entries are dropped the greater the diagonal modifications. This will 

result in the larger drop tolerances performing much more poorly on the better-

conditioned systems than would be the case if the impact of these diagonal 

modifications could be avoided. To achieve this, it is possible to scale the diagonal 

modifications by a fixed factor, ν . By starting with 0ν =  and increasing ν  whenever 

the factorisation fails because of a non-positive pivot (to a maximum of 1), the 

preconditioner can avoid reducing the effectiveness of the preconditioner for the better 

conditioned systems but avoid failure as the systems become more ill-conditioned. This 

approach mirrors the process used with the ICTP solver where instead of factorising A , 

the system ( )diagα+A A  or β+A I  is factorised. This modified version of RIC1 is 

labelled nuRIC1. 
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The performance profiles of efficiency and runtime are shown in Figure 45 and Figure 

46, where the preconditioner has its drop tolerance appended with a prefix t. These 

profiles show that the smaller the drop tolerance, the better the robust incomplete 

Cholesky preconditioner performs. This is expected for the RIC1 preconditioner, where 

the diagonal modifications are less when fewer entries are dropped. The use of the 

relaxation parameter ν  clearly improved the efficiency of the preconditioner overall, 

but for 410τ −=  solved one less of the systems. The greater efficiency of nuRIC1 over 

RIC1 did not coincide with a similar difference in the runtime because of the greater 

preconditioner construction costs. 

 
Figure 45. Performance profile of efficiency by RIC1 drop tolerance. 

4.1.3.3.4 Incomplete Cholesky with second-order corrections 
With preconditioner efficiency defined as the iteration count multiplied by the number 

of non-zeros in the incomplete factor, the second-order incomplete Cholesky 

preconditioner will generally produce highly efficient preconditioners. This does hide, 

however, the often large intermediate storage that is necessary to build the 

preconditioner. For this reason, no efficiency profiles are shown, just the runtime 

profiles without the diagonal modifications with dropped entries in Figure 47 and with 
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stabilisation in Figure 48. The two flavours of the preconditioner are labelled RIC2 and 

RIC2S for with and without the diagonal perturbations, respectively. Again, the drop 

tolerances are shown prefixed with t and the fill control for the second-order update 

matrix R  is prefixed with r. 

 
Figure 46. Performance profile of factor plus 3× solve time by RIC1 drop tolerance. 

 As with ICTP and RIC1, it is clear that the smaller the drop tolerance, the more 

effective the preconditioner in terms of both runtime and the number of systems solved. 

There appears to be little difference between the two high fill control values of 40p =  

and 80 for 310τ −= , but the tighter fill controls adversely impact the preconditioner 

quality on a number of the systems. For the largest drop tolerance of 110τ −= , the fill 

control makes negligible difference for RIC2. For RIC2S, this effect is apparent for both 
110τ −=  and 210− . 

Comparing the preconditioner with and without stabilisation in Figure 49 gives a clear 

indication that the diagonal perturbations for dropped entries in RIC2S makes a 

significant improvement over RIC2 for the problems in the test set. 
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Figure 47. Performance profile of factor plus 3× solve time by RIC2 parameter choice. 

4.1.3.3.5 Comparison with available incomplete Cholesky packages 
A comparison between these implementations and those from some highly-regarded 

libraries was performed. The previously discussed incomplete Cholesky preconditioners 

are compared with the incomplete Cholesky factorisations constructed by the MA61 and 

MI28 packages in the HSL. HSL’s MA61 is a relatively conventional right-looking 

incomplete Cholesky factorisation, while MI28 is a state-of-the-art second-order 

stabilised robust incomplete Cholesky implementation similar to the RIC2S 

implementation used above. The MA61 and MI28 packages are both available in source 

form. MA61 is a right-looking TLDL  factorisation. The incomplete factorisation in MI28 

is a left-looking Cholesky implementation using linked lists of ancestors for each node 

in the elimination tree, and attempts to minimise the diagonal shift parameter, α , that 

allows an incomplete factorisation to be computed by increasing/decreasing α  and 

recomputing the factorisation. While MI28 has many options, the default values for all 

parameters except τ , p , and r  were used. The second drop threshold for entries 

dropped from L  and not to be included in R  was set at τ . This implementation can 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s 
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t 

α 

RIC2_t0.001_r80

RIC2_t0.001_r40

RIC2_t0.001_r20

RIC2_t0.001_r10

RIC2_t0.01_r80

RIC2_t0.01_r40

RIC2_t0.01_r20

RIC2_t0.01_r10

RIC2_t0.1_r80

RIC2_t0.1_r40

RIC2_t0.1_r20

RIC2_t0.1_r10



157 

 

be expected to achieve very similar performance to the RIC2S implementation 

developed here, while MA61 is compared only on the more easily-solved systems as its 

diagonal perturbation approach to non-positive pivots is insufficient to effectively 

precondition many of the numerically harder systems in the test set. These results are 

displayed in Table 24. 

 
Figure 48. Performance profile of factor plus 3× solve time by RIC2S parameter 

choice. 

On these problems, the ICTP implementation described here dominates MA61 in 

factorisation time and solve time, being faster for all but one of the systems 
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same drop tolerance, fill-in is roughly the same for the middle IPM iteration systems as 
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iterations to converge compared with MA61’s 263 iterations. MA61 also has some 

unexpectedly large iteration counts for 310τ −=  on 3DsqrexcUB2_08 and 

3DsqrfootUB_12. Based on these results, MA61 was not considered any further in this 

study. 

 
Figure 49. Performance profile of factor plus 3× solve time with RIC2 and RIC2S for 

some of the more accurate parameter settings. 

MI28 was tested both with and without the no-fill updates from TRR , and the 

performance profiles are shown without the updates in Figure 50 and in Figure 51 with 

the updates. The figures appear almost identical, and this is confirmed in Figure 52 

where 310τ −=  with an L  fill control of 40 and R  fill controls of 40 and 80. The same 

behaviour as with the implemented preconditioners exists here, with a reduced drop 

tolerance leading to more systems solved in less time. 

The top performing parameter settings for ICTP, RIC1, nuRIC1, and RIC2S are 

compared with the top performing MI28 preconditioner in Figure 53. The nuRIC1 

preconditioner appears to be the best performing approach for 75% of the problems in 

the test set. The RIC1 and RIC2S solve more problems than nuRIC1, but at a slight 

performance disadvantage. ICTP is clearly not competitive, and the MI28 
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shows the number of non-zeros in the incomplete factorisation, including the 

intermediate R  entries for the second-order methods. When it converges, ICTP 

generally has the lowest non-zero count. Note that the different drop criterion in RIC1 

(drop ijv  if ( ) ( )j j
ij i jv d dτ≤ , where ijv  is an entry that is yet to be divided by the 

diagonal jd in its column when computing column j ) causes it generally to have more 

non-zeros than ICTP (drop ijv  if ( )j
ij jv dτ≤ ) for the same drop threshold. For most 

systems, the RIC1 and nuRIC1 preconditioners with 410τ −=  are of similarly size to the 

second-order methods with 310τ −=  and R  containing 40 to 80 entries per column. 

Table 24. Comparison of MA61 and ICTP on some upper bound 3D systems. Both 
methods are using the same AMD ordering. 

System Prec beta p tau Lnz nit ||r|| tfactor tsolve 

3DsqrexcUB2_01 ICTP 0  0.001 3,107,095 16 8.187E-09 0.49 0.20 
3DsqrexcUB2_01 MA61  8 0.001 3,070,004 263 7.99E-09 1.93 3.19 

3DsqrexcUB2_01 ICTP 0  0.0001 6,159,195 7 3.651E-09 1.93 0.14 
3DsqrexcUB2_01 MA61  8 0.0001 4,884,377 51 9.45E-09 6.70 0.85 

3DsqrexcUB2_08 ICTP 0.001  0.001 4,648,726 262 9.648E-09 1.74 3.87 

3DsqrexcUB2_08 MA61  8 0.001 5,029,849 11320 9.811E-09 6.80 186.60 
3DsqrexcUB2_08 ICTP 0.001  0.0001 8,866,606 187 9.364E-09 13.35 3.99 

3DsqrexcUB2_08 MA61  8 0.0001 9,751,167 189 9.997E-09 31.92 5.02 

3DsqrfootUB_01 ICTP 0  0.001 3,629,324 17 8.293E-09 0.44 0.22 
3DsqrfootUB_01 MA61  8 0.001 3,334,297 16 4.194E-09 1.93 0.25 

3DsqrfootUB_01 ICTP 0  0.0001 7,885,251 7 6.591E-09 1.87 0.17 
3DsqrfootUB_01 MA61  8 0.0001 6,052,946 8 4.853E-09 7.12 0.21 

3DsqrfootUB_12 ICTP 0.001  0.001 4,231,361 71 6.794E-09 1.16 1.02 

3DsqrfootUB_12 MA61  8 0.001 4,412,107 1635 9.945E-09 2.84 31.71 
3DsqrfootUB_12 ICTP 0  0.0001 8,833,194 13 3.094E-09 2.22 0.33 

3DsqrfootUB_12 MA61  8 0.0001 7,273,197 34 9.635E-09 9.12 0.91 

3DsqrfootUB2_01 ICTP 0  0.001 2,306,657 10 1.517E-09 0.36 0.10 
3DsqrfootUB2_01 MA61  8 0.001 2,324,502 10 3.123E-09 1.46 0.09 

3DsqrfootUB2_01 ICTP 0  0.0001 4,264,378 4 9.746E-09 1.20 0.06 
3DsqrfootUB2_01 MA61  8 0.0001 3,610,849 6 1.492E-09 4.41 0.08 

3DsqrfootUB2_11 ICTP 0  0.001 3,297,940 25 5.05E-09 0.49 0.29 

3DsqrfootUB2_11 MA61  8 0.001 3,523,282 135 8.622E-09 2.19 1.64 
3DsqrfootUB2_11 ICTP 0  0.0001 5,560,940 7 9.597E-09 1.65 0.12 

3DsqrfootUB2_11 MA61  8 0.0001 5,154,269 12 1.903E-09 7.05 0.20 

 

 There are large discrepancies, however, on 3DsqrexcLB where the second-order 

methods have around half the non-zeros of RIC1 and nuRIC1, and on 3DtunheadUB, 

where the opposite is the case (although, in both cases, RIC1 and nuRIC1 outperformed 

the more sophisticated preconditioners in runtime performance). 
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Figure 50. Performance profile of factor plus 3× solve time with MI28 by parameter 

choice. 

 
Figure 51. Performance profile of factor plus 3× solve time with MI28 by parameter 

choice with no-fill TRR  updates. 
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Figure 52. Performance profile of factor plus 3× solve time with MI28 comparing with 

and without no-fill TRR  updates. 

 

Figure 53. Performance profile of factor plus 3× solve time with best incomplete 
Cholesky preconditioners. 
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From these tests, it is obvious that the standard incomplete Cholesky preconditioner, 

even with quite small drop tolerances and diagonal shifts, is not sufficiently robust to 

compute the search direction in an IPM consistently. It is difficult to draw general 

conclusions about the RIC1, nuRIC1, and RIC2S preconditioners, with mixed rankings 

across the problem set. 

4.1.3.4 Sparse approximate inverses 
The factorised sparse approximate inverse (FSAI) method was tested using the 

FSAIPACK software package [221] designed for multicore systems. While the package 

implements numerous sophisticated approximate inverse features, none of these 

appeared to offer any advantage over the basic method during preliminary testing. The 

same four re-ordering methods used for the IC factorisations were tested for FSAIPACK, 

with the sparsity pattern for the approximate inverse being either the first, second, or 

third power of A . 

The performance profiles of efficiency and runtime for the FSAI preconditioners tested 

are shown in Figure 54 and Figure 55. The FSAI-based methods solve between 50% 

and 65% of the problems in the test set, with little difference in performance among the 

orderings in general. The worst-performing methods used the dense sparsity patterns of 

( )3tril A . While the efficiency profile generally favoured the sparsity pattern of the 

original matrix, the banded orderings with a power of two sparsity pattern achieved the 

best runtime performance across the widest range of the problems tested. Interestingly, 

the different orderings resulted in different iteration counts for the original sparsity 

pattern (i.e. a power of 1). 

Figure 56 and Figure 57 compare the efficiency and runtime performance against some 

of the robust incomplete Cholesky preconditioners. The high α  values in both figures 

are indicative of the poor relative performance of the FSAI approach on these problems, 

with FSAIPACK taking an order of magnitude or more longer than the IC preconditioners 

for almost all the test systems. The FSAIPACK preconditioners were not considered 

further. 
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Table 25. Incomplete Cholesky preconditioner non-zeros. Note that RIC2S and MI28 
values include the number of entries in R . System best values are in bold. 

Problem Iterat RIC2S 
t1E-3 r80 

RIC2S 
t1E-3 r40 

MI28 RRT 
t1E-3 p40 r80 

MI2 
t1E-3 p40 r80 

RIC1 
t1E-4 

nuRIC1 
t1E-4 

ICTP 
t1E-4 

2DfootingLB 
1 48,181,944 29,567,544 47,763,010 29,148,610 18,257,763 18,257,763 - 
5 48,460,693 29,846,293 47,937,439 29,323,039 19,015,901 19,015,901 - 
26 - - - - - - - 

2DfootingUB 
1 35,863,514 21,902,714 35,697,251 21,736,451 12,097,548 12,426,641 10,094,413 
7 36,563,155 22,602,355 36,252,173 22,291,373 13,717,719 14,068,063 10,870,684 
23 36,053,109 22,092,309 35,439,227 21,478,427 16,737,184 16,737,184 - 

2DtunnelLB 
1 20,266,670 11,794,710 20,223,439 11,751,479 4,881,983 4,915,762 4,177,734 
7 20,987,352 12,515,392 20,910,020 12,438,060 5,901,792 5,904,992 4,996,552 
35 - - - - - - - 

2DtunnelUB 
1 17,969,636 10,283,276 17,999,158 10,312,798 3,454,875 3,488,087 3,342,097 
8 18,524,172 10,837,812 18,546,363 10,860,003 4,155,104 4,145,446 3,850,849 
22 18,352,489 10,666,129 18,345,865 10,659,505 4,247,076 4,247,076 - 

3DsqrexcLB 

1 19,069,324 12,414,480 18,091,705 11,487,151 12,500,731 13,143,543 10,741,933 

9 20,410,118 13,759,088 18,493,103 11,884,427 22,932,096 23,160,451 14,669,871 

16 19,863,716 13,241,902 - - 22,486,943 22,505,497 - 

3DsqrexcUB 

1 18,983,144 11,346,357 18,473,866 10,912,090 7,889,490 8,244,551 7,100,785 

10 20,680,025 12,988,199 19,546,404 11,959,050 14,221,679 14,498,513 10,930,285 

19 - 12,924,519 - - 15,586,904 15,638,940 11,559,253 

3DsqrexcUB2 

1 9,772,718 6,395,018 9,127,936 5,795,155 6,516,542 6,734,619 6,159,195 

8 11,152,032 7,736,616 9,776,503 6,373,640 10,543,303 10,769,277 8,866,606 

38 10,820,472 7,516,326 - - 11,237,777 11,287,605 8,804,988 

3DsqrfootLB 

1 18,185,705 11,965,697 17,220,198 11,072,771 12,185,233 12,185,233 10,759,061 

11 19,172,459 12,947,414 17,894,544 11,748,154 15,724,039 - 9,100,987 

19 18,945,357 12,724,609 - - - - 12,569,669 

3DsqrfootUB 

1 13,529,897 8,566,333 12,814,436 7,934,600 8,285,553 8,667,294 7,885,251 

12 14,174,177 9,198,159 13,289,190 8,409,910 9,749,364 10,150,660 8,833,194 

20 14,106,530 9,151,021 13,304,387 8,416,287 9,829,626 9,971,620 8,803,047 

3DsqrfootUB
2 

1 6,827,491 4,541,262 6,406,752 4,138,776 4,472,196 4,556,316 4,264,378 

11 7,808,367 5,511,313 7,236,426 4,970,413 6,166,816 6,242,172 5,560,940 

21 7,719,621 5,429,459 7,187,095 4,951,597 6,307,611 6,311,431 5,611,009 

3DtunheadLB 

1 30,020,565 20,027,864 - - - - - 

12 31,337,618 21,362,894 - - - - - 

21 - - - - - - - 

3DtunheadUB 

1 20,839,358 13,109,129 19,948,353 12,335,895 11,616,517 12,124,717 10,904,381 

13 21,426,661 13,687,739 20,302,463 12,691,146 14,119,504 15,007,448 11,618,902 

25 21,554,924 13,880,374 - - 18,815,249 18,890,351 12,982,614 
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Figure 54. Performance profile of FSAIPACK preconditioner efficiency. 

 
Figure 55. Performance profile of build plus 3× solve time with FSAIPACK by ordering 

and pattern power. 
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Figure 56. Performance profile comparison of efficiency between some of the robust 

incomplete Cholesky factorisations and the better FSAI preconditioners. 

 
Figure 57. Performance profile of preconditioner build plus solve with the best 

incomplete Cholesky and FSAI preconditioners and parameter settings. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250

%
 o

f p
ro

bl
em

s 
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t 

α 

RIC1_0.0001

nuRIC1_0.0001

FSAIPACK_AMD_1

FSAIPACK_RCM_2

FSAIPACK_Sloan_2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250

%
 o

f p
ro

bl
em

s 
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t 

α 

RIC2S_t1E-3_r80

RIC2S_t1E-3_r40

RIC1_t1E-4

nuRIC1_t1E-4

FSAIPACK_AMD_k1

FSAIPACK_RCM_k2

FSAIPACK_Sloan_k2



166 

 

4.2 Solving the augmented equations 
The two basic preconditioners for saddle point systems are the block analytic inverse (or 

block LU ) factorisation and the block diagonal or block triangular preconditioner with 

the Schur complement. Note that the block inverse can be considered to be a 

generalisation of the oft-cited constraint preconditioner (see Reference [222] for a 

discussion). Because of the better conditioning of the augmented equations (note the 

substantially smaller upper bound on the error in Table 16 than the corresponding 

systems in Table 15), it is possible that the Krylov solvers may be able to improve on 

the performance on the Schur complement system. In the following, the block analytical 

inverse 

 
1 1 1 1 1 1

1 1 1

ˆ ˆ

ˆ ˆ

T T− − − − − −

− − −

 −
 

−  

H H A S AH H A S

S AH S
, 

the block-diagonal Schur preconditioner 

 ˆα
 
 
 

H 0

0 S
, 

and the block-triangular Schur preconditioner 

 
k α

 
 
 

H
A S

, 

are compared where ( )2=H θW , ˆ T≈S LL  is an incomplete factorisation of 

( ) 2 T−A θW A , and α  and k  are scalars. Note that α  is commonly set at 1 or 4−  and 

both values are tested with the block-diagonal preconditioner [222]. The scalar k  is set 

to 1. 

The iteration counts using these preconditioners are shown in Table 26 and the solve 

time multiplied by three plus the factorisation time are shown in Table 27. To enable a 

direct comparison, the associated runtimes from the better of both the RIC1 and RIC2S 

solvers tested are included. As expected, the number of iterations required to converge 

to a residual 2-norm of 810−  or less generally grew from the 1st system through to the 

last system. The exception here was the 2DfootingLB problem in which the first system 
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took longer to converge than the second system tested. For the problems where it 

converged, the triangular preconditioner converged in fewer iterations than the other 

approaches. It should be noted, however, that each iteration of BiCGSTAB requires 

twice the amount of work as PCG, but can be expected to converge approximately twice 

as fast. With all these preconditioners, there was no improvement over the Schur 

complement system approach when attempting to solve the last system for each 

problem, with the block diagonal Schur ( 4α = − ) and the block triangular Schur 

preconditioners each solving three of the 12 last systems, and the other two 

preconditioners not solving any. Interestingly, the two earlier systems from the 

3DtunheadLB were solved, but took a large number of iterations to converge. The 

runtime performance differs from the iteration count due to the operation count 

difference between SymQMR and BiCGSTAB. The fastest of the four preconditioners 

tested was the analytic block inverse, with the rest presenting mixed results. The two 

block-diagonal Schur preconditioners performed similarly, with α  set to 4−  solving 

more of the problems than 1α = . The block triangular Schur preconditioner often 

outperformed the block diagonal preconditioner in the problems it solved, but failed on 

more of the problems than the other preconditioners. While different systems were 

being solved and, due to the way scaling was used to precondition the Schur 

complement system, the convergence criterion represented different levels of accuracy, 

and the results indicate a strong disadvantage in terms of runtime by solving the 

augmented equations instead of the Schur complement system. Furthermore, very little 

progress was made towards a solution for the later systems that were not solved within 

the 20,000 iteration limit, with some even diverging with the block triangular 

preconditioner. The performance profile in Figure 58 shows that not only were the 

Schur complement based methods able solve the problems considerably more quickly, 

they also solved considerably more of the systems in the test set. 
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Table 26. Saddle point preconditioner iteration counts. † indicates that convergence was not 
achieved within the maximum 20,000 iterations. 

Problem Iteration Block inverse 
SymQMR 

Block diagonal Schur (1) 
SymQMR 

Block diagonal Schur (-4) 
SymQMR 

Block triangular Schur (1) 
BiCGSTAB 

2DfootingLB 

1 812 1,523 1,548 418 

5 780 1,506 1,397 756 

26 † † † † 

2DfootingUB 

1 51 96 101 30 

7 70 128 128 42 

23 † † † † 

2DtunnelLB 

1 37 72 74 21 

7 77 146 144 59 

35 † † † † 

2DtunnelUB 

1 25 48 50 16 

8 49 90 90 35 

22 † † 17,420 † 

3DsqrexcLB 

1 91 173 177 49 

9 758 1,340 1,330 599 

16 † † † † 

3DsqrexcUB 

1 141 264 266 119 

10 764 1,489 1,379 1,517 

19 † † † † 

3DsqrexcUB2 

1 75 140 143 52 

8 453 832 830 350 

38 † † † 17,743 

3DsqrfootLB 

1 27 50 56 16 

11 69 128 125 39 

19 † † † † 

3DsqrfootUB 

1 28 52 58 17 

12 119 215 215 73 

20 † † 8,947 14,898 

3DsqrfootUB2 

1 18 34 39 11 

11 65 114 116 38 

21 † † 3,042 2,696 

3DtunheadLB 

1 3,916 7,143 7,254 3,050 

12 8,979 14,666 14,476 † 

21 † † † † 

3DtunheadUB 
1 43 80 84 27 

13 324 592 590 308 
25 † † † † 
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Table 27. Saddle point preconditioner factor plus 3× solve time. RIC1 was used with 
410τ −=  and RIC2S with 310τ −=  and 40p = . † indicates that convergence was not 

achieved within the maximum 20,000 iterations. The fastest augmented equation times 
are in bold. 

Problem Iteration Block 
inverse 

Block diagonal 
Schur 

 (1) 

Block diagonal 
Schur 
 (-4) 

Block triangular 
Schur 

(1) 
RIC1 RIC2S 

2DfootingLB 

1 173.4 267.3 276.4 144.2 70.3 85.7 

5 168.6 272.5 257.7 262.5 63.6 67.3 

26 † † † † † † 

2DfootingUB 

1 12.1 17.4 18.3 11.2 8.5 5.9 

7 16.2 23.2 23.2 14.9 11.0 7.0 

23 † † † † 497.2 631.3 

2DtunnelLB 

1 4.1 6.1 6.3 3.7 1.6 2.1 

7 8.0 12.2 12.3 9.5 1.9 3.5 

35 † † † † † † 

2DtunnelUB 

1 2.9 4.1 4.3 † 1.0 1.2 

8 5.3 7.5 7.6 † 1.2 1.6 

22 † † 1298.6 † 73.6 126.1 

3DsqrexcLB 

1 12.6 18.1 18.7 11.6 8.7 8.6 

9 86.9 128.7 130.1 115.5 37.6 44.9 

16 † † † † 596.9 1212.4 

3DsqrexcUB 

1 19.2 27.6 28.2 24.1 9.6 7.9 

10 102.9 165.1 153.6 315.9 35.8 39.9 

19 † † † † 730.3 1133.3 

3DsqrexcUB2 

1 9.0 11.4 11.9 † 3.3 4.1 

8 49.0 65.6 66.5 60.7 11.6 17.2 

38 † † † † 206.2 585.3 

3DsqrfootLB 

1 5.3 6.9 7.3 5.1 6.0 4.2 

11 10.7 14.9 14.7 10.2 13.0 15.6 

19 † † † † † 389.4 

3DsqrfootUB 

1 4.1 5.4 5.8 3.8 3.3 2.5 

12 13.8 19.2 19.4 13.3 5.9 5.6 

20 † † 712.8 † 68.5 62.5 

3DsqrfootUB2 

1 2.5 2.9 3.1 2.3 1.9 1.3 

11 7.2 8.5 8.7 6.5 3.0 2.6 

21 † † 187.3 360.5 12.1 23.7 

3DtunheadLB 

1 636.5 992.2 1026.2 849.2 † 317.5 

12 1529.7 2180.8 2196.7 † † 492.3 

21 † † † † † † 

3DtunheadUB 
1 9.4 12.5 13.4 8.9 5.1 5.0 

13 54.5 77.7 78.6 78.1 11.7 18.8 
25 † † † † 242.6 879.9 
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Figure 58. Performance profile of runtime plus 3× solve time with conventional saddle 

point preconditioners. The RIC1 solver used 410τ −= , and RIC2S used 310τ −=  and 
40r = . 

4.3 Addressing the ill-conditioning in the search direction 
In an attempt to overcome the increasingly unfavourable behaviour exhibited by the 

preconditioned iterative schemes for the majority of the FELA problems in the test set 

as the IPM converges towards a solution, a range of approaches were considered. These 

generally sought some method of dealing with the ill-conditioning in the search 

direction, but were not found to perform well in preliminary testing and so were not 

considered further. The approaches included the augmented preconditioner [199] that 

tries to solve KKT equations of the form 

 
T     

=    
    

x pF A
y qA 0

 

with an iterative solver using the block-triangular preconditioner 
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or the block-diagonal preconditioner 

 
1T − +

 
 

F A W A 0
0 W

. 

The majority of the computational effort required to use this preconditioner lies in 

solving a system with the ( )1,1  block 1T −+F A W A , which should be better conditioned 

than F  for an appropriate choice of W , but becomes significantly larger with many 

more non-zeros than the Schur complement system. The augmented Lagrangian Uzawa 

method was found to perform poorly for the same reason, with an almost identical 

system requiring solution. Similarly, the reduced augmented equations [76] described in 

Section 2.4.3.6became much larger and more dense than the Schur complement system. 

The final approach considered was along the lines of that used by Al-Jeiroudi [128] for 

solving linear programs. This scheme seeks a nonsingular basis in the constraint matrix 

that is associated with the small eigenvalues of the ( )1,1  block in the augmented 

equations (note that this is diagonal for linear programming). While very low-fill LU  

factors could be found for the upper bound constraint matrices, the block-diagonal 

nature of the ( )1,1  block in the second-order cone programs meant that in order to 

identify which columns should be considered for inclusion in the basis through 

diagonalisation of the ( )1,1  block, the accompanying modification of the constraint 

matrix made it significantly more dense than the original (very few of the cones have 

eigenvalues which are all small, with most having at least one eigenvalue ( )1O ). 

4.4 Using PCG to compute the search direction in an IPM 
Having considered a range of Krylov subspace solvers for representative systems from 

the IPM and selected the best performing methods, these iterative solvers were then 

used inside the Mixup8 IPM solver by replacing the supernodal Cholesky factorisation. 

Note that no presolving was done as it was found to degrade the performance when used 

in conjunction with the Krylov subspace solvers. 

Unfortunately, the Krylov subspace methods may exhibit erratic convergence which 

makes it difficult to establish reliable tests that discern between idling or divergent 

behaviour [120]. The approach used here was to set a maximum number of iterations for 
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the Krylov solver when computing the first search direction, and then limit each 

subsequent search direction computation to use a maximum of 150% of the iterations 

used at the previous IPM step. A limit of 200% was used for nuRIC1 to account for the 

sudden deterioration of the preconditioner quality as ν  was increased when non-

positive pivots were encountered. This appeared to work well for the problems tested, 

limiting the number of iterations to a reasonable number as the IPM progressed without 

having too much of an adverse impact on the accuracy of the search direction. 

In contrast to the maximum iteration count, the convergence tolerance is likely to have a 

more clearly defined impact on the ability of the IPM to obtain a solution and reduce the 

primal and dual infeasibilities. Two obvious strategies are to set an absolute 

convergence tolerance, which remains fixed, or adopt an adaptive convergence 

tolerance that becomes tighter as the IPM advances towards the solution. The absolute 

tolerance will provide better quality search directions early in the IPM iterations, but at 

a higher cost, while the adaptive approach permits lower accuracy to reduce the number 

of iterations performed by the iterative solver. On 64-bit personal computers, IEEE 

machine precision is approximately 1610− , and it is not uncommon for direct 

factorisations to be able to achieve a residual norm ( ) ( )k k= −r b Ax  of around 1410−  

for well-conditioned SPD systems. If one were seeking to simply substitute an iterative 

solver for a direct method, this provides a good starting point for setting the 

convergence tolerance. Alternatively, the convergence tolerance for the optimisation 

problems (primal and dual infeasibilities, and the normalised complementarity gap) are 

usually set to 810− , suggesting a minimum convergence accuracy because perturbations 

in the search direction of the order 810−  or bigger are likely to adversely impact 

progress towards a feasible solution. It thus seems reasonable to test convergence 

tolerances between 810−  and 1410− . Considering the need to approach a feasible solution 

as well as an optimal solution, an adaptive tolerance should seek to avoid having an 

adverse impact on the reduction of the primal and dual infeasibilities, while still 

allowing for a reduction in the accuracy necessary at each iteration. By choosing a 

minimum required accuracy, and then reducing that to be some multiple of the 

minimum of the primal and dual infeasibilities, a certain minimum solution accuracy 

can be obtained in the early phase of the IPM, with an adaptive choice being used later. 
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Unfortunately, preliminary testing indicated that lower accuracy search directions in 

early IPM iterations had an adverse impact on the IPM convergence towards the 

optimisation problem solution. The convergence tolerance is thus not modified 

throughout the IPM. The problem with both the adaptive and absolute convergence 

tolerances is the failure to take into account the effect of system conditioning on 

solution accuracy. As recommended by Barret et al. [120], a convergence tolerance of 

( ) ( )( )max 1,k kε
∞∞ ∞

≤ +r A x b , where A  was approximated by ( )max ija , was 

used with 1310ε −= . Larger values of ε  were found to be insufficiently accurate in the 

later iterations of the IPM, while smaller values were too difficult to satisfy for some 

systems. 

For the iterative solver-based IPMs the primal infeasibility, dual infeasibility, and 

relative gap convergence tolerances were set to 710−  to avoid the severely ill-

conditioned matrices in the last two to three optimisation iterations. The step length 

relaxation factor was set at 0.95 and the free variables were split into positive and 

negative linear variables. 

4.4.1.1 Small problem set 
The preconditioners nuRIC1 ( 410τ −= ), RIC1 ( 410τ −= ), and RIC2S ( 310τ −=  and 

40r = ) were used to compute the search direction at each iteration of the IPM for the 

small problems in the test set. The results are shown in Table 28. The best performing 

approach from Chapter 3 is included here for comparison, and runtimes and factor non-

zeros as a multiple of the direct solver-based IPM are shown in Table 29. Figure 59 

shows the performance profile with the three preconditioners. 

Overall, the iterative solver results for the small test set are discouraging. It is 

immediately clear that the iterative solver-based IPMs require much longer runtimes 

than the direct solver-based IPMs, ranging from 9 times to 181 times longer. The 

storage requirements for the incomplete factors for the three-dimensional problems were 

all less than that of the direct solver except for 3DsqrexcUB2S, where the incomplete 

factor required 45% more storage than the full factor. This is due to the significant 

savings enabled by eliminating all but one of the free variables during the presolve 

when using the direct solver along with the better sparsity-preserving ordering. 
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The two dimensional problems are worse in relative terms, with RIC2S requiring 20% 

to 140% more storage, while the robust incomplete Cholesky preconditioners only 

saving 10 to 20%, except on 2DtunnelUB, where the storage requirements are 

practically the same as the direct solver. Coupled with the computational time of 15 ×  to 

over 200×  longer to solve, the best iterative approaches considered here are not suitable 

for two-dimensional finite element limit analysis. 

 
Figure 59. Performance profile of runtime on small problem set by incomplete Cholesky 

preconditioner. 

4.4.1.2 The growth of computational requirements on the square footing problems 
While the iterative solver-based IPMs do not perform well compared to those based on 

a direct solver for the small problem set, it was hoped that the iterative solvers could 

show favourable growth characteristics as the problems grow in size. To perform these 

tests, the small, medium, and large square footing problems were solved with the better 

performing iterative solvers being used to compute the search directions. 
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Table 28. IPM results on small problem set with Krylov subspace solvers. * estimated. 
Problem Solver nitIPM nitPCG tT tF tS pobj pinf dinf relgap nnz(L) 

2DfootingLB 

mixup8 28  30.0 14.2 7.6 -14.833 2E-8 8E-9 8E-9 2.58E+7 

nuRIC1  49,450        2.31E+7 

RIC1 12 30,837 1855.7 50.4 1802.7 -14.784 3E-6 4E-7 3E-7 2.31E+7 

RIC2S 11 44,078 1784.1 29.4 1752.1 -14.741 5E-5 7E-7 6E-7 1.22E+7 

2DfootingUB 

mixup8 23  21.0 7.5 5.8 -14.916 8E-9 7E-9 6E-9 1.83E+7 

nuRIC1 17 13,795 608.7 40.8 563.2 -14.909 9E-8 8E-8 8E-8 1.46E+7 

RIC1 17 14,881 626.6 34.0 587.9 -14.909 9E-8 8E-8 8E-8 1.46E+7 

RIC2S 17 26,080 800.6 27.4 768.5 -14.909 9E-8 8E-8 8E-8 9.09E+6 

2DtunnelLB 

mixup8 42  14.2 6.1 4.5 -0.791 9E-8 6E-9 6E-9 7.86E+6 

nuRIC1 29 169,969 3360.3 26.9 3330.7* -0.790 6E-8 9E-8 9E-8 6.36E+6 

RIC1 29 165,948 3254.7 24.6 3227.5 -0.790 6E-8 9E-8 9E-8 6.36E+6 

RIC2S  219,010        4.27E+6 

2DtunnelUB 

mixup8 19  5.6 1.7 1.5 -0.823 3E-9 6E-9 6E-9 4.59E+6 

nuRIC1 22 15,597 247.3 13.2 231.6 -0.824 8E-8 1E-8 1E-8 4.72E+6 

RIC1 19 5,026 86.4 9.9 74.4 -0.823 5E-8 8E-8 7E-8 4.73E+6 

RIC2S 19 9,331 125.2 10.0 113.1 -0.823 6E-8 8E-8 7E-8 3.31E+6 

3DsqrexcLB 

mixup8 17  19.9 15.8 2.2 -121.988 1E-9 7E-9 7E-9 2.41E+7 

nuRIC1 16 24,293 1388.7 252.6 1134.7 -121.987 4E-8 7E-8 7E-8 2.25E+7 

RIC1 13 3,367 312.6 160.6 150.8 -121.922 1E-5 3E-6 3E-6 2.24E+7 

RIC2S 17 87,527 2698.8 72.5 2624.8 -121.987 2E-7 7E-8 7E-8 7.30E+6 

3DsqrexcUB 

mixup8 19  18.4 13.5 2.2 -155.149 5E-10 4E-9 4E-9 1.85E+7 

nuRIC1 19 40,152 1659.4 162.8 1494.3 -155.148 7E-9 7E-8 7E-8 1.60E+7 

RIC1 19 61,735 2351.0 121.2 2227.5 -155.148 4E-8 7E-8 7E-8 1.58E+7 

RIC2S 19 137,020 2665.6 60.0 2603.4 -155.148 3E-8 7E-8 7E-8 5.53E+6 

3DsqrexcUB2 

mixup8 17  9.3 4.4 1.3 -138.246 1E-9 9E-9 9E-9 7.93E+6 

nuRIC1 37 43,349 1401.9 290.8 1103.5 -138.196 9E-8 1E-7 9E-8 1.15E+7 

RIC1 38 57,903 1671.3 240.9 1422.9 -138.196 2E-7 1E-7 9E-8 1.15E+7 

RIC2S  245,586        4.49E+6 

3DsqrfootLB 

mixup8 20  29.7 24.8 2.8 -5.492 1E-9 1E-8 1E-8 2.92E+7 

nuRIC1  58,306        1.50E+7 

RIC1  72,733        1.55E+7 

RIC2S 18 9,346 265.6 54.4 209.8 -5.492 1E-6 4E-7 4E-7 6.86E+6 

3DsqrfootUB 

mixup8 19  21.1 16.7 2.2 -6.234 3E-10 3E-9 3E-9 2.08E+7 

nuRIC1 20 4,255 177.6 66.5 109.0 -6.234 7E-9 5E-8 5E-8 1.03E+7 

RIC1 20 9,890 305.3 58.0 245.1 -6.234 9E-9 5E-8 5E-8 1.00E+7 

RIC2S 20 23,645 372.7 39.1 331.7 -6.234 5E-8 5E-8 5E-8 4.31E+6 

3DsqrfootUB2 

mixup8 19  11.2 5.9 1.3 -6.170 6E-10 6E-9 6E-9 8.93E+6 

nuRIC1 21 2,283 103.8 59.8 39.6 -6.169 2E-8 9E-8 8E-8 6.47E+6 

RIC1 21 3,064 103.4 48.1 50.7 -6.169 9E-9 9E-8 8E-8 6.47E+6 

RIC2S 21 12,995 172.9 27.2 141.2 -6.169 1E-8 9E-8 8E-8 3.27E+6 

3DtunheadLB 

mixup8 22  48.3 39.8 5.0 -22.394 1E-9 6E-9 6E-9 4.35E+7 

nuRIC1  53,121        2.57E+7 

RIC1  30,180        2.05E+7 

RIC2S  90,326        1.13E+7 

3DtunheadUB 

mixup8 20  32.9 25.7 3.9 -33.431 1E-9 7E-9 7E-9 3.13E+7 
nuRIC1 19 816 143.5 105.8 34.7 -33.375 2E-5 4E-6 4E-6 1.71E+7 
RIC1 25 24,380 1154.1 125.4 1024.6 -33.431 8E-8 7E-8 7E-8 1.85E+7 

RIC2S 25 154,719 3459.2 76.8 3378.3 -33.431 9E-8 7E-8 7E-8 6.33E+6 
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Table 29. Runtime and incomplete factorisation size as a multiple of Mixup8 results. 
Problem Solver tT / tmixup8 nnz(LIC) / nnz(L) 

2DfootingLB 

nuRIC1 - 90% 

RIC1 62 90% 

RIC2S - 120% 

2DfootingUB 

nuRIC1 29 79% 

RIC1 30 79% 

RIC2S 38 126% 

2DtunnelLB 

nuRIC1 237 81% 

RIC1 230 81% 

RIC2S - 162% 

2DtunnelUB 

nuRIC1 44 103% 

RIC1 15 103% 

RIC2S 22 239% 

3DsqrexcLB 

nuRIC1 70 93% 

RIC1 - 93% 

RIC2S 135 57% 

3DsqrexcUB 

nuRIC1 90 86% 

RIC1 128 86% 

RIC2S 145 71% 

3DsqrexcUB2 

nuRIC1 152 145% 

RIC1 181 145% 

RIC2S - 99% 

3DsqrfootLB 

nuRIC1 - 51% 

RIC1 - 53% 

RIC2S 9 45% 

3DsqrfootUB 

nuRIC1 8 50% 

RIC1 14 48% 

RIC2S 18 44% 

3DsqrfootUB2 

nuRIC1 9 72% 

RIC1 9 72% 

RIC2S 15 62% 

3DtunheadLB 

nuRIC1 - 59% 

RIC1 - 47% 

RIC2S - 49% 

3DtunheadUB 

nuRIC1 - 55% 

RIC1 35 59% 

RIC2S 105 44% 

 

 The results show that the lower bounds are especially difficult to compute when using 

the Krylov solvers. It is promising that the total PCG iterations experience only 

moderate growth as the problem size grows. Similarly, the number of IPM iterations 

does not increase with problem size for the Krylov solver-based analyses, However, as 

with the small problem set, the IPM took more iterations to converge using an iterative 

solver than with a direct solver, even when a looser tolerance was used. All the primal 

objective function values were the same or very close for the upper bound problems, but 

failure through the time cut-off and lack of convergence occurred on many of the lower 

bound problems. 
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Figure 60 shows the growth in the number of non-zeros in the incomplete factors for 

3DsqrfootUB2, Figure 61 shows the growth in total solution time for 3DsqrfootUB2, 

and Figure 62 and Figure 63 show the same for 3DsqrfootUB. As can be seen in Figure 

60 and Figure 62, the preconditioned iterative solvers show very close to linear growth 

in the factor size across these problems, making them ideal for use when the problems 

are too large to factorise with a direct method. 

Unfortunately, the iterative solvers exhibit nonlinear growth in the runtime as the 

problem size increases. This is shown in Figure 61 and Figure 63. It should be kept in 

mind that this behaviour is being observed with convergence tolerances that were 

relaxed for the iterative solver and on the two problems for which the iterative solver-

based approaches attained the best relative performance. Thus, it is likely that the only 

situation in which an iterative solver should be used to compute the IPM search 

direction for large-scale finite element analysis problems is when memory limitations 

prevent the full Cholesky factor from being computed. Even then, extreme care must be 

taken with the parameter settings to ensure that the preconditioner is not too large while 

still being accurate enough to accelerate convergence. 
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Table 30. Results for square footing problems. 
Problem Solver nitIPM nitPCG tT tF tS pobj pinf dinf relgap m n nnz(A) nnz(L) 

3DsqrfootLBS 

mixup8 20  29.7 24.8 2.8 -5.492 1E-09 1E-08 1E-08 126,972 181,008 1,461,776 29,160,870 

nuRIC1  58306        153,648 208,008 1,785,434 15,001,179 

RIC1  72733        153,648 208,008 1,785,434 15,520,104 

3DsqrfootLBM 

mixup8 24  174.9 159.6 9.7 -5.557 1E-09 4E-09 4E-09 301,120 429,312 3,482,024 95,396,160 

nuRIC1  101265        363,904 492,672 4,246,600 40,799,574 

RIC1 14 37290 4036.8 238.2 3795.6 -5.549 7E-05 1E-05 1E-05 363,904 492,672 4,246,600 42,538,197 

3DsqrfootLBL 

mixup8 24  1588.3 1526.1 42.1 -5.629 3E-09 6E-09 6E-09 1,016,784 1,449,792 11,807,552 485,720,287 

nuRIC1  8112        1,227,168 1,661,472 14,379,178 125,108,516 

RIC1  14487        1,227,168 1,661,472 14,379,178 154,199,318 

3DsqrfootUBS 

mixup8 19  21.1 16.7 2.2 -6.234 3E-10 3E-09 3E-09 65,906 299,498 722,552 20,767,502 

nuRIC1 20 4255 177.6 66.5 109.0 -6.234 7E-09 5E-08 5E-08 121,932 360,720 1,190,052 10,280,051 

RIC1 20 9890 305.3 58.0 245.1 -6.234 9E-09 5E-08 5E-08 121,932 360,720 1,190,052 10,012,930 

3DsqrfootUBM 

mixup8 19  92.7 81.1 5.9 -6.112 8E-10 8E-09 8E-09 159,042 716,402 1,758,648 67,045,990 

nuRIC1 21 2074 388.4 235.3 148.2 -6.112 9E-07 3E-07 3E-07 289,728 856,320 2,833,728 27,723,951 

RIC1 22 13034 1081.2 200.9 874.9 -6.112 3E-08 3E-08 2E-08 289,728 856,320 2,833,728 26,552,870 

3DsqrfootUBL 

mixup8 21  1113.6 1061.6 30.7 -5.991 7E-10 6E-09 6E-09 546,242 2,439,674 6,091,328 383,195,411 

nuRIC1 22 9132 3778.0 1268.5 2491.0 -5.991 1E-08 8E-08 8E-08 980,208 2,894,400 9,607,248 107,277,965 

RIC1 22 21574 6506.2 907.3 5580.3 -5.991 8E-09 8E-08 8E-08 980,208 2,894,400 9,607,248 101,618,223 

3DsqrfootUB2S 

mixup8 19  11.2 5.9 1.3 -6.170 6E-10 6E-09 6E-09 27,480 181,440 1,025,482 8,929,792 

nuRIC1 21 2283 103.8 59.8 39.6 -6.169 2E-08 9E-08 8E-08 56,549 213,708 1,995,855 6,468,086 

RIC1 21 3064 103.4 48.1 50.7 -6.169 9E-09 9E-08 8E-08 56,549 213,708 1,995,855 6,465,459 

RIC2S 21 12995 172.9 27.2 141.2 -6.169 1E-08 9E-08 8E-08 56,549 213,708 1,995,855 3,266,057 

3DsqrfootUB2M 

mixup8 19  43.7 30.6 3.7 -6.048 8E-10 8E-09 8E-09 65,176 430,080 2,497,586 30,064,290 

nuRIC1 23 3290 383.6 220.7 151.2 -6.048 1E-08 5E-08 4E-08 132,149 502,668 4,700,321 18,465,436 

RIC1 23 4244 396.7 200.3 184.9 -6.048 1E-08 5E-08 4E-08 132,149 502,668 4,700,321 18,158,845 

RIC2S 23 15059 504.8 83.3 410.0 -6.048 8E-09 5E-08 4E-08 132,149 502,668 4,700,321 8,125,643 

3DsqrfootUB2L 

mixup8 19  378.7 330.4 15.4 -5.949 5E-10 5E-09 5E-09 220,092 1,451,520 8,658,898 168,066,502 
nuRIC1 22 3146 2020.9 1413.0 569.8 -5.949 1E-08 5E-08 4E-08 439,757 1,683,660 15,761,109 77,203,689 

RIC1 22 4676 1842.1 1004.2 783.0 -5.949 8E-09 5E-08 4E-08 439,757 1,683,660 15,761,109 73,625,152 
RIC2S 22 30272 3263.2 312.8 2912.2 -5.949 2E-08 5E-08 4E-08 439,757 1,683,660 15,761,109 28,815,402 
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Figure 60. Number of non-zeros in factorisation versus number of constraints for 

3DsqrfootUB2. Note that this includes the memory allocated for R  in RIC2S. 

 
Figure 61. Total solution time versus number of constraints for 3DsqrfootUB2. 
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Figure 62. Number of non-zeros in factorisation versus number of constraints for 

3DsqrfootUB. 

 
Figure 63. Total solution time versus number of constraints for 3DsqrfootUB. 
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Chapter 5 Parallelisation of the solution scheme 
In order to solve very large FELA problems in a practical manner, it is necessary to 

minimise the associated wall-clock time required. As processor manufacturers move 

away from increasing the speed of single processing cores to introducing more cores, it 

is crucial that performance-critical portions of the IPM code are parallelised where 

possible. In the following, a brief overview of parallel computing is provided, before 

describing an IPM designed to take advantage of parallel processing capability and 

presenting the performance results obtained with it. Because of the relatively poor 

floating point operation speed of sparse matrix-vector multiplications, as well as the 

lack of their robustness and serial performance, the Krylov subspace solvers are not 

considered further in this Thesis. Instead, we aim to exploit the high performance 

obtained by dense matrix multiplication kernels for direct solvers.  

5.1 Overview of parallel computing 
Although a common interpretation of Moore’s Law finds the increase in computing 

performance has slowed since the early 2000s in terms of processor clock rate, the 

widespread introduction of parallel computing architectures has continued to support 

Moore’s Law, and is likely to continue to do so [223]. As a result of microprocessor 

chips being released with increasing number of cores, application performance will no 

longer experience the performance improvements gained historically through 

uniprocessor development. In addition to the multicore processors, add-on cards 

conventionally designed for rendering graphics (known as graphical processing units or 

GPUs) are now being exploited for general-purpose parallel computation. GPUs today 

have thousands of cores per device, and some are built specifically for computation. To 

increase the total computational power further, individual machines are grouped 

together in a cluster and messages are passed between the machines via a network. Such 

parallelism is often referred to as distributed memory parallelism because of the 

individual memory owned by each machine that is not directly accessible by any other 

machine. This is in contrast to shared memory parallelism, such as that on a multicore 

machine, where each core has direct access to the same memory. GPUs have their own 

memory and require data to be copied between the host machine and the device. 
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Obviously, in network clusters, there are both the shared and the distributed memory 

architectures to work with. 

Interestingly, many of the clusters built recently that rank among the fastest 

supercomputers in the world utilise general purpose GPUs. As an example, the Titan, a 

heterogeneous computing system containing 18,688 networked CPUs (central 

processing units), includes as many NVIDIA Tesla GPUs (graphics processing units) as 

there are CPUs along with 710TB of RAM. Each CPU is a 16 core AMD Opteron, 

while each Tesla GPU has 2688 processing cores. Solving a dense system of linear 

equations, the system has performed at 1517.59 10×  floating point operations per 

second. As of 2013, the list of the top 500 supercomputers in the world no longer 

features any systems with less than 2,000 processing cores. 

In order to achieve high fractions of the peak performance from a given machine, all of 

the machine’s capabilities must be exploited as much as possible. On modern machines, 

this includes vectorisation, data locality, and interprocess communication. There are 

also other important aspects that are largely invisible from software and so will not be 

addressed here (for example, pipelining and multithreading; see [224] for an in-depth 

treatment). Vector, or SIMD (single instruction multiple data), processing allows the 

same operation to be performed on multiple data items simultaneously. While modern 

CPU chips often include vector capabilities for 2 double precision floating point 

operations at a time, GPUs are SIMD machines that can process many more operations 

concurrently. The performance of both, however, is usually determined by memory 

access and data movement. Modern CPUs contain multiple levels of cache in a 

hierarchy, starting with a hard drive on the lower level with high latency but large 

amounts of storage, and progressing to caches with lower latencies but smaller storage 

capacity through to the on-chip registers. Much effort is put into minimising the amount 

and impact of data movement across the memory hierarchy, especially for operations 

with significant data re-use such as matrix-matrix multiplication. As sending, waiting 

for, and receiving messages adds to the overhead of a parallel program, interprocess 

communication should also be minimised. Such communication may be between, 

among others, threads of a multithreaded application on a modern CPU, co-operative 

work performed by a cluster of computers, or between a host computer and a GPU. 
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5.2 Parallelisation of the IPM 
In determining where effort should be focussed within the IPM for the LPs and SOCPs 

solved here, guidance is provided by Amdahl’s Law: the execution time after an 

improvement will be equal to the execution time affected by the improvement divided 

by the amount of improvement plus the execution time that is unaffected. This makes it 

clear that unless the improvement will affect a large fraction of the overall runtime, then 

limited improvement is possible. With the majority of the IPM solution time in the 

factorisation of the coefficient system defining the search direction, improving the linear 

solver has the most potential to make the biggest impact on reducing the overall 

runtime. Table 28 and Table 30 report the factorisation time for some of the test 

problems, showing that in most cases over 75% of the total time is spent in the 

factorisation routine. While other areas are able to be parallelised and are likely to yield 

some improvement [27], [59], [225], the benefit is not expected to be significant for 

FELA problems. It is thus expected that, through the use of parallel dense linear algebra 

subroutines, notably the level 3 BLAS matrix-matrix multiplication routine that allows 

significant reuse of data as well as exhibiting naturally independent operations that can 

be run in parallel, the runtime of the solvers can be significantly reduced. The main 

hurdle to be overcome for sparse linear equation solvers is ensuring that the dense 

subproblems are large enough to fully exploit the available performance of the 

hardware. Fortunately, many of the supernodes, especially as one moves towards the 

root of the elimination tree, are large enough to expect a major improvement if a 

machine’s parallel computing resources can be exploited. This approach also enables 

pre-compiled and highly optimised BLAS libraries to be used on single machines. 

These parallel libraries have been tuned for the hardware and provide a high fraction of 

peak hardware performance. It should be noted that sparse linear equation solvers have 

been developed for distributed systems, including the solver in IBM’s Watson Sparse 

Matrix Package (WSMP) [226], [227]. Most parallel linear equation solvers, however, 

do not involve clusters of networked machines and instead rely on the parallel 

processing capability of an individual machine. 

For the Mixup8 implementation described in Section 3.4, the parallel Intel MKL 11.0.5 

was used for the dense BLAS operations in the supernodal Cholesky factorisation. To 

exploit the highly parallel capability of recent GPU hardware, a modified version of 
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CHOLMOD (version 3.0.3) was used. CHOLMOD was modified by discarding the 

functionality to restart the factorisation when a non-positive pivot is encountered and 

the same modified DPOTRF routine as Mixup8 uses is called in place of the BLAS 

library routine. To test the improvement in performance, the problem set was solved 

using MOSEK with multiple threads, Mixup8 using multiple threads, and Mixup8 utilising 

a GPU. Note that it is not known what specific areas in MOSEK have been parallelised, 

while the two Mixup8 programs are only exploiting parallelism in the factorisation of 

the Schur complement system and subsequent solves, as well as any calls to the BLAS 

library. 

The parallel MOSEK code is labelled mospar, the parallel Mixup8 code mixpar, and the 

code exploiting the GPU mixgpu. Both Mixup8 codes use the presolve process, exploit 

fixed variables, and handle dense columns explicitly. Any free variables that are not 

eliminated are regularised by setting the diagonal in the ( )1,1  block of the augmented 

equations to 1010− , with the exception of any free variable associated with a dense 

column in which the augmented equation system is solved without regularisation. The 

results presented in this chapter summarise simulations performed on an Intel Xeon E5-

1620 @ 3.60 GHz with 64GB RAM and an NVIDIA Tesla K20c GPU. 

Figure 64 and Table 31 presents a comparison of the runtime between the parallel 

solvers and the complete results on the small problem set, respectively. Figure 65 and 

Table 32 present the same information but for the medium problems, and Figure 66 

shows the iteration counts on the large problem set with Figure 67 and Table 32 

containing the runtimes and complete results, respectively, for the large problems. 

The two Mixup8 codes generally compute the same objective values, with slight 

differences due to rounding differences in the solver that stem from different 

accumulation processes when computing the contribution from the child supernodes. On 

the GPU version, this process is scheduled dynamically, which means that small 

differences may result from run to run. As expected, the iteration counts are almost 

identical between the two Mixup8 solvers. 

MOSEK computes similar objective values for most problems, but, as with the sequential 

solver, it has trouble with the 2Dtunnel*B problems, converging on different solutions 
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in all three sizes. While the reason is not known, it is likely due to the deletion of a 

constraint thought to be redundant. The commercial solver also has fewer non-zeros in 

the factorisation, but this difference may be a result of the non-zero count reported for 

the Mixup8 codes including the unused space in each supernode. It should be noted that 

the GPU version of Mixup8 also converges on a different objective value for 

2DtunnelLBL and appears to be caused by the slight difference arising from rounding 

described above. 

The difference in runtime on the small problem set shown in Figure 64 is not great nor 

consistent across all problems, with the GPU version being slowest on all four of the 

two-dimensional problems, and showing negligible improvement over the parallel 

Mixup8 solver. Both Mixup8 solvers compare favourably against MOSEK on the three-

dimensional problems, being faster on all the small test problems except 

3DsqrfootUB2S. This improvement is more pronounced and consistent across all of the 

three-dimensional problems in the medium problem set as shown in Figure 65. 

Moreover, the GPU version of Mixup8 is clearly faster than the CPU-only version on all 

of the three-dimensional problems but again offers no improvement in the two-

dimensional cases. This is similar to the large problem set, although, to determine that 

the two-dimensional performance results are mixed, one must look at Table 33 because 

the scale required for the large three-dimensional problems obscure the details in Figure 

67. 
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Figure 64. Comparison of the total solution time on the small problem set between the 
parallel solvers. 

 

 

Figure 65. Comparison of the total solution time on the medium problem set between 
the parallel solvers. 
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Table 31. Parallel solver results on small problems. 

Problem Solver nit tT tP tO pobj pfeas dfeas relgap m n nnz(A) nnz(L) 

2DfootingLB 
mospar 25 31.0 0.3 8.1 -14.831 5E-9 6E-9 6E-9 464,940 523,391 2.8E+6 1.8E+7 

mixpar 29 32.6 0.2 2.2 -14.833 5E-8 8E-9 7E-9 465,080 523,530 2.8E+6 2.6E+7 

mixgpu 27 36.2 0.3 3.6 -14.833 1E-8 8E-9 8E-9 465,080 523,530 2.8E+6 2.6E+7 

2DfootingUB 
mospar 20 19.9 0.5 4.9 -14.914 5E-10 7E-9 3E-9 348,040 696,990 1.9E+6 1.4E+7 

mixpar 23 24.6 0.2 1.4 -14.916 8E-9 7E-9 6E-9 348,040 696,990 1.9E+6 1.8E+7 

mixgpu 23 27.3 0.3 2.8 -14.916 8E-9 7E-9 6E-9 348,040 696,990 1.9E+6 1.8E+7 

2DtunnelLB 
mospar 19 11.0 0.8 3.1 -0.767 5E-8 3E-8 3E-8 106,462 182,924 1.6E+6 6.3E+6 

mixpar 32 12.6 0.2 0.6 -0.790 8E-8 3E-8 3E-8 152,694 229,375 9.2E+5 7.9E+6 

mixgpu 37 16.2 0.2 2.0 -0.791 1E-6 5E-9 5E-9 152,694 229,375 9.2E+5 7.9E+6 

2DtunnelUB 
mospar 16 7.9 0.9 1.2 -0.763 4E-8 6E-8 6E-8 51,916 243,158 7.7E+5 3.9E+6 

mixpar 19 6.3 0.2 0.4 -0.823 3E-9 6E-9 6E-9 64,275 255,516 6.2E+5 4.6E+6 

mixgpu 19 8.4 0.3 1.8 -0.823 3E-9 6E-9 6E-9 64,275 255,516 6.2E+5 4.6E+6 

3DsqrexcLB 
mospar 17 18.8 0.2 2.6 -121.987 1E-8 3E-8 3E-8 121,348 147,458 1.4E+6 2.1E+7 

mixpar 17 14.1 0.2 0.6 -121.988 9E-10 7E-9 7E-9 121,348 147,457 1.4E+6 2.4E+7 

mixgpu 17 13.5 0.2 2.0 -121.988 8E-10 7E-9 7E-9 121,348 147,457 1.4E+6 2.4E+7 

3DsqrexcUB 
mospar 19 16.2 0.3 1.3 -155.147 3E-8 4E-8 4E-8 69,648 248,834 7.9E+5 1.5E+7 

mixpar 19 13.1 1.0 0.2 -155.149 5E-10 4E-9 4E-9 69,648 248,833 7.4E+5 1.9E+7 

mixgpu 19 13.3 1.1 1.8 -155.149 5E-10 4E-9 4E-9 69,648 248,833 7.4E+5 1.9E+7 

3DsqrexcUB2 
mospar 25 11.7 0.6 1.3 -138.247 1E-7 2E-8 6E-9 31,227 152,221 1.2E+6 6.9E+6 

mixpar 17 8.1 0.7 0.2 -138.246 1E-9 9E-9 9E-9 26,464 147,457 9.8E+5 7.9E+6 

mixgpu 17 9.1 0.6 1.6 -138.246 1E-9 9E-9 9E-9 26,464 147,457 9.8E+5 7.9E+6 

3DsqrfootLB 
mospar 21 42.6 0.8 4.7 -5.492 9E-9 2E-8 2E-8 109,786 163,895 2.1E+6 3.3E+7 

mixpar 20 18.7 0.1 0.6 -5.492 2E-9 1E-8 1E-8 126,972 181,008 1.5E+6 2.9E+7 

mixgpu 20 16.7 0.1 2.1 -5.492 2E-9 1E-8 1E-8 126,972 181,008 1.5E+6 2.9E+7 

3DsqrfootUB 
mospar 18 18.6 0.7 2.3 -6.234 9E-9 2E-8 2E-8 36,430 270,023 1.0E+6 1.5E+7 

mixpar 19 14.1 0.2 0.4 -6.234 3E-10 3E-9 3E-9 65,906 299,498 7.2E+5 2.1E+7 

mixgpu 19 12.6 0.2 1.9 -6.234 3E-10 3E-9 3E-9 65,906 299,498 7.2E+5 2.1E+7 

3DsqrfootUB2 
mospar 19 9.1 0.5 1.1 -6.169 1E-8 3E-8 3E-8 27,882 181,843 1.1E+6 7.9E+6 

mixpar 19 9.2 0.5 0.2 -6.170 6E-10 6E-9 6E-9 27,480 181,440 1.0E+6 8.9E+6 

mixgpu 19 10.0 0.5 1.7 -6.170 6E-10 6E-9 6E-9 27,480 181,440 1.0E+6 8.9E+6 

3DtunheadLB 
mospar 24 54.3 0.5 5.0 -22.394 2E-5 7E-8 6E-7 203,063 239,581 2.4E+6 3.8E+7 

mixpar 22 31.5 0.2 0.9 -22.394 1E-9 6E-9 6E-9 203,868 240,193 2.4E+6 4.3E+7 

mixgpu 22 26.9 0.3 2.4 -22.394 1E-9 5E-9 5E-9 203,868 240,193 2.4E+6 4.3E+7 

3DtunheadUB 
mospar 20 27.5 0.4 2.0 -33.430 4E-8 4E-8 4E-8 112,752 406,730 1.2E+6 2.6E+7 

mixpar 20 22.4 0.3 0.4 -33.431 1E-9 7E-9 7E-9 112,752 406,729 1.2E+6 3.1E+7 

mixgpu 20 20.2 0.3 1.9 -33.431 1E-9 7E-9 7E-9 112,752 406,729 1.2E+6 3.1E+7 
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Table 32. Parallel solver results on medium problems. 

Problem Solver nit tT tP tO pobj pfeas dfeas relgap m n nnz(A) nnz(L) 

2DfootingLB 
mospar 19 66.8 0.7 20.6 -14.824 9E-9 8E-9 8E-9 1,050,210 1,181,986 6.3E+6 4.6E+7 

mixpar 25 68.5 0.5 5.4 -14.832 2E-8 8E-9 8E-9 1,050,420 1,182,195 6.3E+6 6.3E+7 

mixgpu 23 72.8 0.6 6.8 -14.831 2E-8 1E-8 1E-8 1,050,420 1,182,195 6.3E+6 6.3E+7 

2DfootingUB 
mospar 20 45.4 1.1 12.4 -14.886 5E-10 5E-9 2E-9 786,660 1,574,685 4.3E+6 3.4E+7 

mixpar 22 52.1 0.5 3.3 -14.889 8E-9 7E-9 7E-9 786,660 1,574,685 4.3E+6 4.5E+7 

mixgpu 22 58.2 0.6 4.8 -14.889 8E-9 7E-9 7E-9 786,660 1,574,685 4.3E+6 4.5E+7 

2DtunnelLB 
mospar 16 26.7 2.0 7.3 -0.649 4E-8 4E-8 4E-8 267,653 439,945 3.2E+6 1.6E+7 

mixpar 36 30.4 0.3 1.6 -0.798 2E-7 9E-8 9E-8 344,242 516,863 2.1E+6 1.9E+7 

mixgpu 37 37.1 0.3 3.1 -0.798 2E-7 8E-8 8E-8 344,242 516,863 2.1E+6 1.9E+7 

2DtunnelUB 
mospar 15 18.5 2.6 3.4 -0.718 2E-8 2E-8 2E-8 144,197 575,059 1.7E+6 1.0E+7 

mixpar 18 13.3 0.6 1.0 -0.816 4E-9 8E-9 8E-9 144,757 575,618 1.4E+6 1.1E+7 

mixgpu 18 16.3 0.6 2.4 -0.816 4E-9 8E-9 8E-9 144,757 575,618 1.4E+6 1.1E+7 

3DsqrexcLB 
mospar 16 144.5 0.5 11.1 -125.520 1E-8 3E-8 3E-8 408,897 497,666 4.8E+6 1.1E+8 

mixpar 17 89.1 1.5 2.1 -125.523 1E-9 9E-9 9E-9 408,897 497,665 4.7E+6 1.3E+8 

mixgpu 17 51.9 1.6 3.6 -125.523 1E-9 9E-9 9E-9 408,897 497,665 4.7E+6 1.3E+8 

3DsqrexcUB 
mospar 18 113.9 0.9 4.8 -148.403 2E-8 3E-8 3E-8 239,652 850,178 2.7E+6 8.5E+7 

mixpar 19 89.0 10.5 1.0 -148.408 6E-10 5E-9 5E-9 239,652 850,177 2.6E+6 1.0E+8 

mixgpu 19 58.1 11.2 2.4 -148.408 6E-10 5E-9 5E-9 239,652 850,177 2.6E+6 1.0E+8 

3DsqrexcUB2 
mospar 24 66.6 2.2 5.4 -135.582 2E-7 3E-8 3E-8 104,910 513,656 4.0E+6 3.7E+7 

mixpar 16 36.0 3.1 0.7 -135.584 8E-10 6E-9 6E-9 88,920 497,665 3.4E+6 4.3E+7 

mixgpu 16 31.3 3.2 2.1 -135.584 8E-10 6E-9 6E-9 88,920 497,665 3.4E+6 4.3E+7 

3DsqrfootLB 
mospar 21 216.7 1.9 12.9 -5.557 1E-8 3E-8 3E-8 261,560 389,881 5.0E+6 1.1E+8 

mixpar 24 88.2 0.3 1.5 -5.557 2E-9 4E-9 4E-9 301,120 429,312 3.5E+6 9.5E+7 

mixgpu 24 49.3 0.3 3.0 -5.557 2E-9 5E-9 5E-9 301,120 429,312 3.5E+6 9.5E+7 

3DsqrfootUB 
mospar 21 100.9 2.0 7.1 -6.112 8E-9 2E-8 2E-8 91,185 648,546 2.5E+6 5.7E+7 

mixpar 19 48.4 0.4 1.1 -6.112 8E-10 8E-9 8E-9 159,042 716,402 1.8E+6 6.7E+7 

mixgpu 19 31.9 0.4 2.5 -6.112 8E-10 8E-9 8E-9 159,042 716,402 1.8E+6 6.7E+7 

3DsqrfootUB2 
mospar 19 33.0 1.3 3.0 -6.048 1E-8 3E-8 3E-8 65,970 430,875 2.6E+6 2.7E+7 

mixpar 19 27.7 1.2 0.5 -6.048 8E-10 8E-9 8E-9 65,176 430,080 2.5E+6 3.0E+7 

mixgpu 19 24.1 1.3 1.9 -6.048 8E-10 8E-9 8E-9 65,176 430,080 2.5E+6 3.0E+7 

3DtunheadLB 
mospar 30 217.0 1.3 12.8 -22.736 7E-8 1E-7 1E-6 486,495 573,281 5.8E+6 1.2E+8 

mixpar 34 170.1 0.6 2.4 -22.736 7E-9 9E-9 9E-9 488,064 574,465 5.8E+6 1.4E+8 

mixgpu 34 108.0 0.6 3.9 -22.736 1E-8 9E-9 9E-9 488,064 574,465 5.8E+6 1.3E+8 

3DtunheadUB 
mospar 20 110.3 1.0 5.6 -32.293 3E-8 3E-8 3E-8 274,032 980,834 3.0E+6 9.0E+7 

mixpar 19 77.0 0.6 1.1 -32.295 1E-9 9E-9 9E-9 274,032 980,833 3.0E+6 1.1E+8 

mixgpu 19 53.5 0.7 2.6 -32.295 1E-9 9E-9 9E-9 274,032 980,833 3.0E+6 1.1E+8 
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Figure 66. Comparison of the iteration count on the large problem set between the 
parallel solvers. 

 

Figure 67. Comparison of the total solution time on the large problem set between the 
parallel solvers. 
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Table 33. Parallel solver results on large problems. 

Problem Solver nit tT tP tO pobj pfeas dfeas relgap m n nnz(A) nnz(L) 

2DfootingLB 
mospar 16 117.8 1.2 39.3 -14.820 5E-9 7E-9 7E-9 1,870,680 2,105,181 1.1E+7 8.6E+7 

mixpar 22 110.5 0.9 11.3 -14.830 3E-8 1E-8 1E-8 1,870,960 2,105,460 1.1E+7 1.2E+8 

mixgpu 20 109.4 1.0 11.5 -14.830 3E-8 1E-8 1E-8 1,870,960 2,105,460 1.1E+7 1.2E+8 

2DfootingUB 
mospar 17 79.3 1.9 24.2 -14.868 4E-10 6E-9 3E-9 1,401,680 2,805,180 7.7E+6 6.5E+7 

mixpar 18 78.8 0.9 6.2 -14.876 8E-9 7E-9 7E-9 1,401,680 2,805,180 7.7E+6 8.6E+7 

mixgpu 18 87.5 1.1 7.8 -14.876 8E-9 7E-9 7E-9 1,401,680 2,805,180 7.7E+6 8.6E+7 

2DtunnelLB 
mospar 15 48.8 3.5 13.2 -0.480 5E-8 5E-8 5E-8 513,831 820,353 5.2E+6 2.8E+7 

mixpar 37 58.5 0.5 3.0 -0.800 4E-6 7E-8 7E-8 612,588 919,549 3.7E+6 3.7E+7 

mixgpu 28 52.5 0.6 4.4 -0.694 5E-6 7E-6 7E-6 612,588 919,549 3.7E+6 3.7E+7 

2DtunnelUB 
mospar 15 36.0 4.6 6.9 -0.581 4E-8 2E-8 2E-8 301,965 1,068,447 3.0E+6 2.0E+7 

mixpar 18 24.7 1.0 1.8 -0.812 3E-9 6E-9 6E-9 257,049 1,023,530 2.5E+6 2.2E+7 

mixgpu 18 29.1 1.1 3.2 -0.812 3E-9 6E-9 6E-9 257,049 1,023,530 2.5E+6 2.2E+7 

3DsqrexcLB 
mospar 20 376.5 1.0 22.6 -123.869 1E-8 3E-8 3E-8 763,216 930,818 8.9E+6 2.4E+8 

mixpar 21 254.9 4.7 4.2 -123.872 4E-9 1E-8 1E-8 763,216 930,817 8.8E+6 2.7E+8 

mixgpu 21 125.8 5.1 5.7 -123.872 3E-9 1E-8 1E-8 763,216 930,817 8.8E+6 2.7E+8 

3DsqrexcUB 
mospar 17 498.6 2.1 13.7 -144.429 3E-8 4E-8 4E-8 573,504 2,027,522 6.6E+6 2.9E+8 

mixpar 18 386.5 57.2 2.5 -144.443 9E-10 8E-9 8E-9 573,504 2,027,521 6.2E+6 3.4E+8 

mixgpu 18 191.4 61.6 4.0 -144.443 9E-10 8E-9 8E-9 573,504 2,027,521 6.2E+6 3.4E+8 

3DsqrexcUB2 
mospar 24 269.2 5.2 13.9 -134.439 2E-7 2E-8 2E-10 246,277 1,215,623 9.6E+6 1.3E+8 

mixpar 16 135.0 12.1 1.7 -134.442 7E-10 6E-9 6E-9 210,304 1,179,649 8.2E+6 1.4E+8 

mixgpu 16 85.1 12.4 3.2 -134.442 7E-10 6E-9 6E-9 210,304 1,179,649 8.2E+6 1.4E+8 

3DsqrfootLB 
mospar 20 1571.4 7.6 51.3 -5.628 2E-8 3E-8 3E-8 914,109 1,347,406 1.6E+7 5.6E+8 

mixpar 24 681.0 1.0 5.8 -5.629 3E-9 6E-9 6E-9 1,016,784 1,449,792 1.2E+7 4.9E+8 

mixgpu 24 223.2 1.0 7.3 -5.629 4E-9 6E-9 6E-9 1,016,784 1,449,792 1.2E+7 4.9E+8 

3DsqrfootUB 
mospar 23 1071.4 7.7 27.1 -5.991 1E-8 3E-8 3E-8 394,485 2,287,918 7.9E+6 3.4E+8 

mixpar 21 475.5 1.3 4.2 -5.991 7E-10 6E-9 6E-9 546,242 2,439,674 6.1E+6 3.8E+8 

mixgpu 21 159.9 1.4 5.6 -5.991 7E-10 6E-9 6E-9 546,242 2,439,674 6.1E+6 3.8E+8 

3DsqrfootUB2 
mospar 18 264.2 4.7 12.5 -5.949 1E-8 3E-8 3E-8 221,686 1,453,115 8.9E+6 1.5E+8 

mixpar 19 183.3 4.2 1.8 -5.949 5E-10 5E-9 5E-9 220,092 1,451,520 8.7E+6 1.7E+8 

mixgpu 19 95.3 4.3 3.3 -5.949 5E-10 5E-9 5E-9 220,092 1,451,520 8.7E+6 1.7E+8 

3DtunheadLB 
mospar 22 1885.2 4.4 56.5 -22.737 4E-6 1E-6 1E-5 1,658,879 1,953,217 2.0E+7 6.6E+8 

mixpar 24 978.9 1.9 9.4 -22.747 7E-9 9E-9 9E-9 1,662,720 1,956,097 2.0E+7 7.2E+8 

mixgpu 27 388.6 2.2 11.0 -22.751 7E-9 1E-8 1E-8 1,662,720 1,956,097 2.0E+7 7.2E+8 

3DtunheadUB 
mospar 19 1071.9 3.4 24.9 -30.768 3E-8 3E-8 3E-8 948,024 3,367,442 1.0E+7 5.2E+8 

mixpar 17 584.1 2.1 4.3 -30.741 9E-10 5E-9 5E-9 948,024 3,367,441 1.0E+7 5.9E+8 

mixgpu 19 236.1 2.3 5.7 -30.774 1E-9 7E-9 7E-9 948,024 3,367,441 1.0E+7 5.9E+8 

 

The performance profile shown in Figure 68 demonstrates that using a GPU to 

accelerate the factorisation can significantly reduce the time compared with parallel 

approaches on common multi-core processors. While not shown here, compared with 

the original Mix8 solver on the medium problem set, Mixup8 with the GPU was 39 ×  

faster in total runtime. Furthermore, it is apparent that significant improvements can be 

achieved over commercial optimisation packages for solving large-scale finite element 

limit analysis problems. Table 34 shows the total time on the problem sets by the 

parallel solvers, with the serial Mixup8 performance included for comparison. Using the 

GPU accelerated the IPM to 4.8×  faster than the serial Mixup8 and over 4 ×  faster than 
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MOSEK with 4 threads on the large problem set. This increases to a speedup of 5.5×  over 

serial Mixup8 and 4.65×  over MOSEK on the large three dimensional problems, and it is 

expected that the performance benefit will increase with problem size beyond the large 

problems tested here. The GPU results are over 2 ×  faster than the parallel MKL 

version. 

Table 34. Total solution time using parallel IPM solvers on the test set. 

 mixup8 mospar mixpar mixgpu 
Small 261.6 268.5 207.3 210.3 

Medium 1,323.1 1,160.2 789.9 592.5 
Large 8,616.8 7,290.2 3,951.7 1,784.0 

 

 
Figure 68. Performance profile of parallel solvers on large problems. 
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Figure 69. Total solution time versus number of constraints in original problem with 

Mixup8 using the GPU with CHOLMOD. 
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Chapter 6 Conclusions and future work 
This Thesis has developed and presented new methods to solve very large scale finite 

element limit analysis problems efficiently, including those in three dimensions, and has 

provided large performance gains on realistic problems against the latest state-of-the-art 

packages available. Improvements to the solution of the ill-conditioned linear equations, 

which are embedded in IPM formulations for FELA problems, including presolve 

routines and different sparsity-preserving orderings, led to speedups of approximately 

1.5×  over the fastest available solver. This improvement increased to a speedup of over 

4 ×  by exploiting modern highly parallel hardware. The ab initio development of a 

range of advanced preconditioned iterative linear solvers was also pursued, but 

ultimately proved unfruitful. 

It was shown that, especially for three dimensional problems, the computational and 

storage burden increases rapidly as the problem size increases for FELA, presenting a 

major challenge to the analysis of larger and more complex designs. Comparing with 

the best state-of-the-art commercial solvers, substantial efficiencies could be realised 

through the use of a good presolve process eliminating free and fixed variables where 

beneficial, dealing with dense columns, and utilising a high quality sparsity-preserving 

nested dissection ordering in combination with a high-performance supernodal direct 

solver. The presolve process identified free variables that could be eliminated without 

incurring an increase in the number of non-zeros in the constraint matrix, which reduced 

the size of the problem as well as avoided the computational difficulties presented by 

the free variables. This elimination was performed by modifying an efficient sparse LU  

factorisation with the ability to search for pivots by degree or actual fill-in. The free 

variable elimination was supported with the efficient handling of any dense columns, 

which often arose through the free variable elimination. This allowed the sparse 

Cholesky factorisation to be completed without the dense columns and accounted for 

them afterwards. The nested dissection (ND) ordering was found to provide superior 

results in terms of the fill-in during factorisation at a small and amortisable increase in 

time over the approximate minimum degree (AMD) method. Similarly, the supernodal 

Cholesky factorisation provided a performance benefit over the symmetric multifrontal 

method. The supernodal factorisation arranged all floating point computations so that 
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highly optimised dense linear algebra kernels could be used, avoiding the slower 

accesses inherent in dealing with sparse matrices. 

In seeking a reduction in the exhibited growth in computational demands as the 

problems became larger, especially in three dimensions, a range of iterative solvers and 

preconditioning approaches were tested. They were found to be very sensitive to the 

ordering, the drop tolerance used, and the conditioning of the system. Although some of 

the approaches reduced the storage demands and computational complexity, their lack 

of robustness and uneven performance across the problem set, particularly when 

approaching the optimal solution, made them unsuitable for further study. The reverse 

Cuthill-McKee (RCM), Sloan, ND, and AMD permutations were compared using Ajiz-

Jenning’s robust incomplete Cholesky factorisation (RIC1) and preconditioned 

conjugate gradient (PCG) on the Schur complement equation. Contrary to many 

published results, the approximate minimum degree ordering was found to 

approximately match or outperform the RCM and Sloan orderings on the test systems. 

A new robust incomplete method (nuRIC1) was developed to exploit the fact that the 

diagonal modifications of RIC1 reduce the rate of convergence and are not always 

necessary to compute an incomplete factor. The new method instead restarts the 

factorisation with an increased fraction of the diagonal modifications used if a non-

positive pivot was encountered in the aim of minimising the perturbation but allowing a 

Cholesky factor to be computed. The two robust incomplete factorisation methods were 

then tested against a conventional incomplete Cholesky with threshold-based dropping 

and maximum fill control, and a second-order stabilised incomplete factorisation 

(RIC2S). The three robust methods were preferable over the conventional incomplete 

Cholesky, especially for the more ill-conditioned systems. Factorised sparse 

approximate inverses with the RCM, Sloan, or AMD orderings were not found to be 

competitive with the incomplete factorisations. The symmetric quasi-minimal residual 

(SymQMR) solver was used to test the block inverse, block-diagonal Schur, block-

triangular Schur, block-diagonal augmented, and block-triangular augmented 

preconditioners on the augmented equations, but underperformed the methods targeting 

the Schur complement equation. A range of other methods aimed at reducing the impact 

of the increasing ill-conditioning as the IPM nears optimality were also considered but 

were not found to be worth developing beyond a preliminary stage. These methods 
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included the augmented Lagrangian Uzawa method, reduced augmented equations, and 

an approach that sought a sparse non-singular basis in the constraint matrix associated 

with small entries in the ( )1,1  block of the augmented equations. The three best-

performing approaches, RIC1, nuRIC1, and RIC2S, were compared with the best 

approach using a direct solver and were found to yield a reduction in the amount of 

storage required, but the corresponding growth in computation time and the inability to 

solve a number of the test problems, especially the lower bound problems, deemed them 

unsuitable for further development. 

The best performing direct method was then used as a basis to harness the powerful 

features of modern parallel machines and add-on GPU devices. With the arrangement of 

all floating point computations into dense algebra operations, high performance kernels 

were exploited to reduce the time spent in computing the search direction at each 

iteration of the IPM. These speedups were obtained with no loss in robustness or 

solution quality. 

6.1 Future work 
While the methods outlined in this Thesis have provided a significant improvement over 

existing approaches, it is likely that further gains can be made through further software 

developments and better utilisation of available hardware. 

The direct solvers which yield the greatest benefit are not designed to handle systems 

that are not positive-definite. Two key approaches are likely to improve the robustness 

of a direct solver. The first is to develop a highly parallel, symmetric indefinite solver 

that uses 2 2×  block pivots when a zero or negative pivot is encountered, even though 

this leads to a non-static sparsity pattern and may result in significant non-zero growth 

in the factor. The second, more simple, approach is to follow the approach of Stewart 

[205] and modifying the pivot to a suitable value and then correct for it during the solve 

phase. Careful consideration would need to be given to either of these approaches so as 

not to destroy the parallelism exploited in the Cholesky solver. 

Further benefit may be gained by seeking parallelism through the elimination tree. As 

all nodes on the same level of the elimination tree are independent, the updates to each 

of these nodes or supernodes may be carried out simultaneously. This will yield a high 
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number of independent tasks early on in the factorisation. The suggested approach 

would also provide tasks for multiple computers and GPUs, and therefore would be 

especially suitable for exploiting machines with greater parallel capability. 
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