

The Development of Efficient Algorithms for
Large-Scale Finite Element Limit Analysis

Nathan Carl Podlich
BEng(Hons); BBus; BCompSci

A thesis submitted in fulfilment of the requirements for the degree

of Doctor of Philosophy in Civil Engineering

September 2017

I hereby certify that the work embodied in the thesis is my own work, conducted under

normal supervision.

The thesis contains no material which has been accepted, or is being examined, for the

award of any other degree or diploma in any university or other tertiary institution and,

to the best of my knowledge and belief, contains no material previously published or

written by another person, except where due reference has been made in the text. I give

consent to the final version of my thesis being made available worldwide when

deposited in the University’s Digital Repository, subject to the provisions of the

Copyright Act 1968 and any approved embargo.

(signed) _________________________

iv

v

Acknowledgements
The author is grateful for the financial assistance received from The Australian

Research Council Centre of Excellence for Geotechnical Science and Engineering

during his candidature.

The author would like to acknowledge his sincere gratitude for the patience and support

of Professor Andrei Lyamin and Professor Scott Sloan. Their timely assistance and

proof-reading are greatly appreciated. Thanks are also extended to Associate Professor

Andrew Abbo for his guidance and enthusiasm.

Finally, thank you to my partner, Jessica, for her unwavering support and tolerance.

vi

vii

Abstract
Finite element limit analysis is a useful numerical method for stability assessment of a

wide range of geotechnical and structural applications yielding lower and upper bound

estimates on the ultimate loads which can be exerted on the structure. The most

advanced formulations of numerical limit analysis are often cast as a conic optimisation

problem, which is then solved very efficiently by specialised interior point methods.

However, as the problems become larger, especially in three dimensions the

computational demands in terms of both storage and time increase significantly.

This Thesis details the development of efficient methods for the solution of linear

systems and presolve routines within an interior point framework for conic programs.

Therefore, these methods all aim to reduce the computational time required to solve the

finite element limit analysis problems. The solution of a linear system comprises the

majority of the computational requirements and is thus the primary concern of this

Thesis. A range of preconditioners for Krylov subspace iterative solvers are considered,

as well as more conventional direct solvers and their parallelisation. The presolve

routines seek to reduce the size of the optimisation problem to be solved and avoid

likely numerical difficulties.

Preconditioners for Krylov subspace iterative solvers are the primary determinant for

the success of an iterative solver-based approach. A range of preconditioners are

developed for both positive-definite and symmetric indefinite linear systems in attempt

to avoid the significant runtime and storage requirements associated with the direct

solvers. The best performing methods are tested against state-of-the-art implementations

using direct solvers on a set of test problems but are found to be uncompetitive in their

runtime performance and their robustness. The focus is then switched to the

parallelisation of a direct solver on modern hardware including massively parallel GPUs

to reduce the computation time with significant gains achieved.

In addition to exploiting the full power of parallel processing, the Thesis develops and

describes presolve routines which target effective treatment of fixed and free variables.

The fixed variables cannot be immediately substituted out of the problem because they

are associated with other variables through a conic constraint, but may still be exploited

by careful manipulation of the linear system. The free variables can sometimes be

viii

substituted out of the problem, however, avoiding the numerical difficulties they often

present. This is achieved without increasing the size of the linear system to be solved,

although it may require the ability to handle dense columns. Finally, an approach for

solving a linear system with dense columns is detailed similar to that of exploiting the

fixed variables.

ix

Notation
Throughout this Thesis, matrices are denoted with upper-case bold symbols, while

vectors are denoted by lower-case bold symbols. Scalar matrix or vector entries shall be

denoted by lower-case symbols. Scalars are most often denoted by lower case characters

from the Greek alphabet. x and A refer to the vector and matrix whose entries are the

absolute value of the entries of x and A , respectively. The inequality symbols ≤ and

≥ are element-wise inequalities, i.e. 0≤A indicates that all entries of A are non-

negative.

The equations defining the search direction within an interior point method are of the

general form =Ax b . These symbols are used throughout to denote the components of

a general system of linear equations. Any restrictions or limitations on the components

of the general form are noted explicitly in the given context.

A bracketed superscript indicates the iteration index. However, in cases where inverse

or transposition notation is required, the iteration index will be moved to the subscript

and remain bracketed. Furthermore, a convention of using k for iteration indices will

generally be adhered to, while i and j will normally represent row and column indices,

respectively.

x

xi

Table of contents
Acknowledgements ... v

Abstract ... vii

Notation ... ix

Table of contents .. xi

Chapter 1 Introduction .. 1

1.2 Finite element limit analysis ... 2

1.2.1 History of finite element limit analysis .. 2

1.2.2 Finite element limit analysis formulation .. 4

1.2.3 The FELA optimisation problem ... 14

1.3 Interior point methods for conic programming ... 15

1.3.1 Background .. 15

1.3.2 The search direction in interior point methods .. 22

1.3.3 Handling free variables .. 27

Chapter 2 Computing the search direction in IPMs .. 31

2.1 Direct solution schemes .. 32

2.1.1 Gaussian elimination .. 33

2.1.2 Orthogonal factorisation .. 40

2.1.3 Reordering .. 41

2.2 Inexact search directions in IPMs for conic optimisation ... 42

2.2.1 The relative performance of basic linear algebra operations 43

2.2.2 Iterative method termination .. 45

2.2.3 Iterative method termination within IPMs ... 47

2.3 Iterative solution schemes ... 49

2.3.1 Stationary methods ... 51

2.3.2 Ritz-Galerkin approach .. 53

2.3.3 Minimal norm residual approach ... 55

2.3.4 Petrov-Galerkin approach .. 59

2.3.5 Minimal norm error approach .. 62

2.3.6 Hybrid methods .. 62

2.4 Preconditioners for iterative linear solvers ... 64

2.4.1 Matrix splitting and incomplete factorisation preconditioners 66

2.4.2 Approximate inverses .. 68

xii

2.4.3 Block structured preconditioners .. 70

2.4.4 Matrix permutation and ordering .. 78

Chapter 3 Performance of conventional approaches on some FELA problems 79

3.1 Test problems .. 79

3.1.1 Two-dimensional problems .. 79

3.1.2 Three-dimensional problems .. 82

3.1.3 Problem summary ... 87

3.2 Compared solvers .. 88

3.2.1 MOSEK .. 89

3.2.2 Gurobi ... 89

3.2.3 SDPT3 4.0 .. 89

3.2.4 SeDuMi 1.31 ... 90

3.2.5 Mix8 ... 90

3.3 Comparison results .. 91

3.3.1 Smaller problems .. 92

3.3.2 Finer mesh problems .. 95

3.3.3 Comparison summary ... 99

3.4 Improving on the basic IPM implementation .. 103

3.4.1 Choice of direct method ... 104

3.4.2 Matrix reordering .. 107

3.4.3 Dealing with free variables ... 110

3.4.4 Presolving ... 114

3.4.5 Improvement summary ... 127

Chapter 4 Iterative solver approaches ... 131

4.1 Solving the normal equations .. 131

4.1.1 Test problems ... 132

4.1.2 Choices related to the iterative solver ... 133

4.1.3 Preconditioning the normal equations .. 135

4.2 Solving the augmented equations .. 165

4.3 Addressing the ill-conditioning in the search direction ... 170

4.4 Using PCG to compute the search direction in an IPM ... 171

Chapter 5 Parallelisation of the solution scheme ... 181

5.1 Overview of parallel computing .. 181

5.2 Parallelisation of the IPM .. 183

xiii

Chapter 6 Conclusions and future work .. 193

6.1 Future work ... 195

References ... 197

1

Chapter 1 Introduction
One of the most crucial aspects in the design of ground-based structures is the stability

of the supporting material, the soil. The upper and lower bound theorems of limit

analysis [1] provide a useful methodology to address the stability of the supporting body

[2]. A lower bound on the true collapse load can be identified by finding a stress

distribution which satisfies the equilibrium equations and stress boundary conditions,

and does not violate the yield criterion at any point (a statically admissible stress field).

An upper bound to the true collapse load can be determined by equating the external

rate of work to the internal power dissipation through an assumed velocity field, and

ensuring that the velocity boundary conditions, and the strain and velocity compatibility

conditions are satisfied (a kinematically admissible velocity field). Using the lower and

upper bound theorems with suitable stress and velocity fields, one can bracket the

collapse load as accurately as is necessary for a given problem [3]. The availability of

such a precise measure of the error sets limit analysis apart from many other forms of

numerical analysis and makes it a very useful tool in predicting soil stability.

Formally, the lower bound can be stated as follows [3]:

If a distribution of stresses, ijσ , can be found that satisfy equilibrium, balances the applied

loads, iT , on the stress boundary, tA , and everywhere satisfies the yield condition () 0ijf σ < ;

then the body will not collapse.

The upper bound theorem states [3]:

If a compatible mechanism of plastic deformation, with strain rates p
ijε and strain rates p

iju , is

assumed satisfying 0p
iu = on the displacement boundary uA ; then the applied loads, iT , and

the body forces, iF , determined by equating the rate at which the external forces do work,

T

p p
i i i i

A V

T u dA Fu dV+∫ ∫ , to the rate of internal dissipation, ()p p p
ij ij ij

V V

D dV dVε σ ε=∫ ∫ , will be

either higher or equal to the actual limit load.

These theorems assume that the continuum will only be subject to small deformations

and be composed of a perfectly plastic material obeying an associated flow rule. The

associated flow rule requires the plastic strain rates, p
ijε , to be normal to the surface of

the material’s yield function, denoted by ()ijf σ [4].

2

As the geometry of the problem and the supporting soil being analysed becomes more

complex, however, obtaining useful bounds on the true collapse load analytically

becomes impossible or incredibly tedious. Fortunately, by discretising the problem

using finite elements, realistic problems with stratified or anisotropic soils, complicated

multi-structure geometries, and complicated loading may be analysed. This procedure is

known as finite element limit analysis (FELA) and requires an optimisation problem to

be solved to obtain each of the lower and upper bounds.

1.2 Finite element limit analysis
In the following, a brief history of FELA focussing on the work that has contributed to

computing rigorous lower and upper bound solutions for problems in geomechanics is

presented. The formulation of FELA problems into conic optimisation problems is then

described before discussing the most common optimisation method being used to obtain

solutions in the recent FELA literature.

1.2.1 History of finite element limit analysis
Lysmer [5] appears to be the first to apply a finite element discretisation to solve a limit

analysis problem in soil mechanics. He obtained lower bounds on some plane problems

by solving a linear program (LP) using the Simplex method [6]. In the formulation,

Lysmer used three-noded linear finite elements, allowed for statically admissible stress

discontinuities at the element interfaces, and used a linearised Mohr-Coulomb yield

function. While it was stated that a minimum of a six-sided approximation was

necessary, all Lysmer’s results were obtained using an iterative method in which he

solved the problem multiple times, and each time using just three linear inequalities to

represent the yield criterion at each node; based on the stress state in the previously

obtained solution, the three inequalities were modified to more closely resemble the

Mohr-Coulomb criterion, although this process was not found to be stable [5]. The

unknown nodal stresses for each element comprise a normal stress on the element faces

(in two dimensions) either side of each node, and an additional normal stress

perpendicular to one of the sides at the opposite node. The shear stresses are uniquely

determined by an affine transformation of the normal stresses. While leading to fewer

unknowns than a more conventional formulation (with three unknown stresses at each

node in two dimensions), the constraint matrix may contain entries that vary widely in

3

magnitude because of their dependence on the element shape [5]. Anderheggen and

Knöpfel [7] formulated linear programs to obtain both lower and upper bound solutions

with a linearised Mohr-Coulomb material, but the equilibrium and compatibility

conditions are only satisfied approximately and so the bounds obtained are not true

bounds. Pastor [8] obtained lower bounds for the vertical cut and introduced

prolongation or extension zones, which ensure the material does not violate the yield

criterion beyond the finite element discretisation. Bottero et al. [9] solve some plane

strain upper and lower bounds for a linearised Mohr-Coulomb through linear

programming and mention that they have extended the kinematic formulation to use

quadratic triangular elements, although no details are given. Sloan formulates both

lower [10] and upper [11] bound problems as linear programs using a linearisation of

the Mohr-Coulomb criterion, solving them efficiently by exploiting sparsity and using

an active set method with a steepest edge search [12] that is better suited to LPs with

more constraints than unknowns (which is generally the case when one linearises the

Mohr-Coulomb yield condition). Sloan and Kleeman [13] improved the upper bound

formulation, allowing for velocity discontinuities between each element and the

direction of shearing to be found automatically.

In the early 1990s, a variety of solution schemes appeared in the literature capitalising

on the advances being made in the optimisation field. Christiansen and Kortanek [14]

solved Christiansen’s [15] earlier mixed formulation (yielding neither a true lower nor

upper bound) much more efficiently using an interior point method (IPM) for LP.

Similarly, Zouain et al. [16] employed an IPM for nonlinear programming and solved a

mixed formulation, representing the yield constraints as nonlinear inequalities and thus

obviating the need for a large number of linear inequalities. The scheme does, however,

require a smooth approximation to any non-differentiable points in the yield criterion

(present in the Mohr-Coulomb criterion among others) [17]. This method was extended

by Lyamin [18] and Lyamin and Sloan [19], [20] to obtain rigorous lower and upper

bounds in a very general implementation, citing speedups of over 50 × compared with

an LP formulation and allowing three-dimensional problems to be solved. Pastor et al.

[21] also demonstrated the superiority of the IPM scheme in solving both lower and

upper bound vertical cut problems. Krabbenhøft et al. [22] introduced a stress-based

upper bound formulation that provides a significantly improved method for

4

incorporating discontinuities, and showed that the formulation was typically about 2 ×

faster than the conventional formulation given by Lyamin and Sloan [20].

The beginning of the third century saw finite element limit analysis (FELA) results

published using conic inequalities to represent the yield criterion, generally for von

Mises materials (see for example, [23], [24]). Building on these results,

Makrodimopoulos and Martin [25], [26] presented second order cone program (SOCP)

formulations for Drucker-Prager materials in two and three dimensions, and Mohr-

Coulomb materials in two dimensions. They then solved the SOCP using one of the

leading commercial solvers, MOSEK [27], that uses an efficient primal-dual IPM. The

Mohr-Coulomb criterion for three-dimensional problems may also be cast as a

semidefinite constraint, leading to a semidefinite program (SDP) [28]–[30]. These conic

programs can exploit the large body of theoretical and practical results concerning IPMs

obtained by the mathematical programming community during the last three decades.

Details of these methods are considered in greater depth below.

The conic formulations are not the only FELA approaches being actively developed by

researchers. An upper bound approach using an augmented Lagrangian optimisation

scheme using MUMPS has the benefit that the matrix defining the search direction does

not exhibit growth in the condition number as a solution is approached [31], and allows

exploitation of parallel cluster-based systems to reduce the solve time, using domain

decomposition to divide the work among processors [32].

1.2.2 Finite element limit analysis formulation
A brief overview of the finite element formulation of limit analysis problems is covered

below, following [10], [11], [19], [20], [22], [25], [26]. For both the upper and lower

bound formulations we consider a soil mass of volume V and surface area A , with

prescribed tractions acting on the boundary tA denoted as t , q being the unknown

tractions acting on qA , and the known and unknown body forces acting on V denoted

as g and h , respectively. The soil material satisfies the yield function () 0f ≤σ , where

σ represents the stresses in the soil. As the problems considered here are in both two

and three dimensions, we denote the dimension of the problem as D , and consider the

following subscripts to be equivalent when discussing problem formulations

5

1, 2,z 3x y≡ ≡ ≡ , corresponding to the standard rectangular Cartesian coordinate

system. A superscript l indicates that the component corresponds to the l th node and a

superscript e indicates that it corresponds to element e .

For computing both lower and upper bounds, the continuum is discretised using finite

elements and thus the stresses in the lower bound and the velocities in the upper bound

formulation at any point inside each element can be computed with

1

1

D
l

l
l

N
+

=

= ∑σ σ (1.1)

and

1D

l
l

l
N

+

= ∑u u , (1.2)

respectively. Note that the description here considers linear elements, using the linear

shape functions

0

D

l lk k
k

N a x
=

= ∑ , (1.3)

where lσ are the nodal stresses, lu are the nodal velocities, kx are the nodal

coordinates, and

 () 11 l k lk
lka + += −

C
C

,

1 1
1
2 2
1

1 1
1

1
1

1

D

D

D D
D

x x
x x

x x+ +

 =

C

,

C is the determinant of C , and lkC is the determinant of matrix obtained by

removing the l th row and the k th column from C . Note that the index of the first

column of C is 0 while the index of the first row is 1 when computing the

determinants lkC .

6

This allows the standard finite element strain-displacement matrix eB for linear-

displacement constraint-strain elements to be represented as

 1 1e l D+ = B B B B ,

where

() ()

() ()

() ()

111 111 11 11

1 1

11 11 1 1

, ,

, ,

, ,

D D

l
DD DD DDD DDD

D D D D D D

a l a l

a l a l

a l a l

δ φ δ φ

δ φ δ φ

δ φ δ φ

 =

B

,

1 if or
0 otherwiseijk

i j i k
δ

= =
=

 ,

and

if
if

1 otherwise
ijk

k i j
j i kφ

=
= =

.

This accounts for the symmetry in the stress tensor (and similarly the strain tensor)

xx xy xz

yx yy yz

zx zy zz

σ σ σ
σ σ σ
σ σ σ

 =

σ

by only considering the upper triangular portion of the stress tensor and using the

ordering

 { }T

xx yy zz xy yz xzσ σ σ σ σ σ=σ (1.4)

for the three-dimensional stress tensor, and

 { }xx yy xyσ σ σ=σ (1.5)

in two dimensions. The strain vector is analogous to this for both two and three

dimensions.

7

In the following, some common yield criteria which can be expressed as conic

inequalities are covered before describing the details specific to each of the lower and

upper bound formulations.

1.2.2.1 Common yield criteria as conic constraints
Common yield criteria used in stability analysis include the Mohr-Coulomb and

Drucker-Prager yield conditions. The Mohr-Coulomb criterion contains within it the

Tresca yield criterion through an appropriate choice of variables, and, similarly, the

Drucker-Prager (or extended von Mises) criterion is a generalised form of the von Mises

yield condition. Both of these criteria may be formulated as conic constraints, as is

shown next.

1.2.2.1.1 The Mohr-Coulomb criterion
The Mohr-Coulomb yield criterion is one of the most common yield conditions in use

today, and includes, as a simplification through setting the friction angle equal to 0 , the

Tresca condition. In three dimensions, the Mohr-Coulomb criterion is equivalent to

restricting the nodal stresses to lie within a semidefinite cone [28]–[30]. The stress at a

point is defined by

11 12 13

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

 =

σ , with ij jiσ σ= ,

and the Mohr-Coulomb yield criterion in three dimensions is of the form

 1 3() (1 sin) (1 sin) 2 cos 0f cφ σ φ σ φ= + − − − ≤σ , (1.6)

where 1σ is the maximum principal stress, 3σ is the minimum principal stress, and

tensile stresses are assumed positive. The principal stresses ()1 2 3, ,σ σ σ are the

eigenvalues of the stress tensor. It has been shown [28]–[30], [33] that (1.6) is

equivalent to enforcing the linear matrix inequalities

() 0k a

λ
λ

+ ≥
− − ≥

σ I 0
I σ

,

8

for 1 sin
1 sin

a φ
φ

−
=

+
, and 2 cos

1 sin
ck φ

φ
=

+
, both non-negative. Krabbenhøft et al. [29] prove the

equivalence by noting that the eigenvalues of λ+A I are the same as the eigenvalues of

A plus λ [34], which provides the inequalities

 3

1

0
() 0k a
σ λ

λ σ
+ ≥
− − ≥

.

When combined, these two relations give 1 3a kσ σ− ≤ .

For plane strain conditions, the Mohr-Coulomb condition can instead be formulated as a

second-order cone constraint [25], [26], [28]. Considering the reduced Mohr-Coulomb

criterion for plane strain conditions (see, e.g., [35])

 2 2() 4 ()sin 2 cos 0xx yy xy xx yy cσ σ σ σ σ φ φ− + + + − ≤ ,

where c is the cohesion and φ is the angle of internal friction, it can be rearranged to

an equality constraint and second-order cone constraint [28] using the auxiliary

variables, z :

2 2
1 2 3

sin sin 0
1 1 0
0 0 2

2 cos
0
0

z z z

c

φ φ

φ

≥ +

= +

 = −

 =

z Dσ d

D

d

.

The first equation is represented with the conic inequality 0≥z . Thus, in plane-strain,

the Mohr-Coulomb yield condition may be represented as a second-order cone

inequality suitable for use in a second order cone program (SOCP).

1.2.2.1.2 Drucker-Prager yield criterion
Drucker and Prager present their yield criterion as “a proper generalization of the Mohr-

Coulomb hypothesis” [2], although (1.6) is considered to be the true generalisation of

the Mohr-Coulomb criterion from two to three dimensions [3]. The Drucker-Prager

9

yield criterion is a right circular cone (or cylinder) [2]. Because of this, the Drucker-

Prager and von Mises yield criteria can be cast as second-order cone constraints. Thus,

the lower and upper bound theorems can be applied to materials governed by these

conditions to formulate a second-order cone program (also known as a conic quadratic

program) [25], [26]. The yield criterion is defined as

 1 2J J kα + ≤ , (1.7)

where α and k are non-negative material constants, 1 1 2 3 11 22 33J σ σ σ σ σ σ= + + = + +

and () () ()2 2 2 2 2 2
2 11 22 22 33 33 11 12 23 13

1 1
2 6ij ijJ s s σ σ σ σ σ σ σ σ σ = = − + − + − + + + . In the

definition of 2J , 1

3ij ij ij
Js σ δ= − where ijδ is the Kronecker delta,

1 if
0 otherwiseij

i j
δ

=
=

.

Under a linear transformation, this is equivalent to the second order cone

 1 1
3 2
Jk α− ≥ s .

For equality with the Mohr-Coulomb criterion in plane strain analyses,
21 12

kc
α

=
−

and
2

3sin
1 3

αφ
α

=
−

 [2]. In three dimensions, one can choose the Lode angle θ for

which the Drucker-Prager condition should equal the Mohr-Coulomb. Writing the

Mohr-Coulomb criterion in the form

 21
2sin cos sin sin ccos 0

3 3
JJ Jφ θ φ θ φ+ − − = ,

then

sin
1cos sin sin
3

φα
θ φ θ

=
−

 (1.8)

and

cos
1cos sin sin
3

ck φ

θ φ θ
=

−
. (1.9)

10

1.2.2.2 Lower bound formulation
The lower bound formulation seeks a statically admissible stress field σ in equilibrium

throughout the soil mass and everywhere satisfying the yield criterion while maximising

the load

 d d
qA V

Q A V= +∫ ∫q h ,

where q are a set of unknown surface tractions acting on qA and h are unknown body

forces acting on the volume V . The domain is discretised using linear finite elements,

in which each node l of element e is associated with the unknown vector lσ (for two-

dimensional problems { }, ,
Tl l l l

xx yy xyσ σ σ=σ , while in three-dimensional problems

{ }, , , , ,l l l l l l l
xx yy zz xy yz xzσ σ σ σ σ σ=σ). The statically admissible stress field must satisfy

equilibrium in the continuum, the discontinuities between each element face (side of a

triangle in two dimensions or a triangular face of a tetrahedron in three dimensions), and

along the domain boundaries. Continuum and boundary equilibrium is described by the

equations

1

+q for 1,...,
D

ij
i i i i

j j

g h t i D
x
σ

=

∂
+ + = =

∂∑ , (1.10)

with ig being the fixed body forces and it the fixed surface tractions (ih and iq are

components of q and h above). Obviously, elements adjacent to the domain boundary

may have surface tractions associated with them, while the interior elements will not.

The above also assumes the surface traction components are in the Cartesian coordinate

system. Considering the symmetry of the stress tensor (for ij ji i jσ σ= ≠), and using

the linear shape functions describing the stress variation over the element, the

continuum equilibrium constraint (1.10) can be formulated for each element as

 0
e e e eα= +B σ p p , (1.11)

where eB is as described above, { }1 2 3 Te =σ σ σ σ with lσ as in (1.4) and (1.5),

()0
e e e= −p t g are the prescribed surface tractions and body forces, and ()e e e= −p q h

represents the surface tractions and body forces to be optimised with the scalar α .

11

Figure 1. Stress discontinuity between two elements.

Statically admissible stress discontinuities are permitted at all inter-element interfaces.

Across these discontinuities, the normal stress perpendicular to the interface and the

shear stress must be continuous, but the tangential normal stress may jump between the

elements. This constraint may be expressed by separating the mesh elements by

discontinuity elements as shown in Figure 1. The equilibrium expression for the two

triangular elements A and B forming a discontinuity patch can be expressed as

 0

0

AA A A

BB B Bα

= +

pB 0 σ p
p0 B σ p

.

As the width of the discontinuity patch goes to zero, this ensures equality of the normal

and shear stress across the discontinuity while allowing the tangential stress to jump.

This simple approach permits statically admissible stress discontinuities by using the

same constraint equalities on the patch elements as the regular elements of the mesh,

 0
T α= +B σ p p . (1.12)

All points throughout the continuum must have a state of stress which lies inside or on

the yield surface of the material. As the stress varies linearly throughout the elements,

the yield condition will be satisfied throughout if it is satisfied at the nodes. Thus, for

each node in the mesh, an inequality constraint of the form

 () 0lf ≤σ

will complete the requirements for a statically admissible stress field. This leads to the

lower bound optimisation problem

12

 0

maximise
subject to

 () 0 1,2,...,

T

l
nf l n

α

α= +

≤ ∀ =

B σ p p
σ

, (1.13)

where nn is the number of nodes in the mesh.

1.2.2.3 Upper bound formulation
The upper bound formulation described here follows Krabbenhøft et al. [22]. The weak

form of the equilibrium equations (1.10) is

 () ()
t q

T T T T

V V A A

dV dV dA
+

+ + − + =∫ ∫ ∫u L σ u g h u t q 0 ,

where L is the matrix of differential operators

0 0 0

0 0 0

0 0 0

T

x y z

y x z

z y x

 ∂ ∂ ∂
 ∂ ∂ ∂

∂ ∂ ∂ = ∂ ∂ ∂
∂ ∂ ∂

 ∂ ∂ ∂

L

for three-dimensional problems, simplifying to

0

0

T x y

y x

∂ ∂
 ∂ ∂
 =

∂ ∂
 ∂ ∂

L

in two dimensions. Note that this exploits the symmetry of the stress tensor. Using

numerical integration with the shape functions (1.2) describing the velocities across

each element, the following matrix expression for equilibrium is obtained for each

element

 () 0

Te e e eα= +B σ p p , (1.14)

where eB is described above, { }e e e e
x y xyσ σ τ=σ for plane-strain problems and

{ }e e e e e e e
xx yy zz xy yz xzσ σ σ τ τ τ=σ for problems in three dimensions, ()0

e e e= −p t g

13

are the prescribed surface tractions and body forces, and ()e e e= −p q h represents the

surface tractions and body forces to be optimised with the scalar α . Note that the

transpose of eB is used and that the stress is constant across the element; this should not

be confused with the linearly varying stress in the lower bound formulation. As with the

lower bound formulation, only the elements on the boundary of the domain can be

associated with surface tractions, and those tractions are assumed to be prescribed in the

same coordinate system as the unknown stresses and body forces.

The weak form of equilibrium may also be applied to the element interfaces allowing

for velocity discontinuities [22]. The normal stress components tangential to the

element interface are allowed to differ on either side of each discontinuity. The normal

stress component that is perpendicular to the interface and the shear stresses acting on

the plane must, however, be continuous. The discontinuity is modelled as a thin “patch”

of elements (two triangles in two dimensions and three tetrahedral elements in three),

with the vertices of each patch element corresponding to those of the adjacent elements

in a way identical to that in the lower bound method described previously.

By following the same approach as in the lower bound formulation to obtain the

perpendicular normal stress, the equality constraints for a two-element mesh with a

discontinuity at their interface are

()

()

TA A A A
T

B B BTB
α

 + =

B 0 σ ρ p
S

σ ρ p0 B
.

Here, ,A BS again contains standard stress transformation matrices which convert the

elemental stresses from the normal-tangent coordinate system for the discontinuity

between elements A and B back to the Cartesian system. Note that the matrix S

represented here is different to the one in the lower bound formulation, as the stress is

constant in the upper bound formulation but varies linearly across the elements in the

lower bound formulation. { }2
TA A A

n
L σ τ=ρ (L is the length of the interface) contains

the shear stress and perpendicular normal stress in the patch element adjacent to the first

element for the discontinuity with the second element. The vector ,B Aρ is defined

14

similarly (note that it is the tangential stress component, tσ , that is allowed to jump

across the discontinuity and so does not appear in 1 2,e eρ).

Again, the additional variables 1 2,e eρ may be substituted out of the problem, leaving the

general form of the equality constraints as

 0
T α= +B σ p p . (1.15)

To complete the problem formulation, the yield condition must not be violated

anywhere. Since the element stresses are constant, this leads to inequality constraints of

the form

 () 0ef ≤σ (1.16)

for each element, including discontinuity elements.

Combining the equilibrium constraints with the yield inequalities leads to the upper

bound optimisation problem

 0

maximise
subject to

 () 0 1,2,...,

T

e
ef e n

α

α= +

≤ ∀ =

B σ p p
σ

, (1.17)

where en is the total number of elements. Equation (1.17) represents the dual of the

conventional upper bound formulation that minimises the power dissipation subject to

flow rule and compatibility constraints to ensure a kinematically admissible failure

mechanism. This dual, or stress-based, upper bound formulation provides a more

convenient problem that can be solved approximately twice as fast as the conventional

formulation while still providing a rigorous upper bound on the true collapse load [22].

1.2.3 The FELA optimisation problem
As seen in the preceding sections, finite element limit analysis leads to the formulation

of an optimisation problem of the form [28]

 0

maximise
subject to
 () 0 1,2,...,i ff i n

α
α= +

≤ ∀ =
Aσ p p
σ

, (1.18)

15

where A is the matrix of equality constraints, σ are the stresses, p and 0p are force

vectors, α is the load multiplier, f represents the yield functions, ≤ is some type of

conic inequality, and fn is the number of points that the yield criterion must be

satisfied at. This can be cast into the canonical form for conic programs as

minimise
subject to
 0 1,2,...,

i

T

i ki n
=

≥ ∀ =

c x
Ax b
x

where kn∈x , c is the objective function, kn is the number of cones, and
i

≥

represents a general partial ordering over the cones i . Common (and useful) cones

include the nonnegative orthant n
+

 (corresponding to the common partial ordering over

the real numbers, i.e. ≥), the Lorentz, quadratic, or second order cone (given a vector

n∈x , 1 2
1

0
i

n
n ii

x x−

=
≥ ≡ ≥ ∑x), and the cone of semidefinite matrices (given a

symmetric matrix T n n×= ∈A A , 0 0
i

T≥ ≡ ≥A x Ax). These are known as linear

programs (LPs), second order cone programs (SOCPs), and semidefinite programs

(SDPs). Formulations involving variables with constraints from more than one of these

cones are generally referred to as mixed cone linear programs or semidefinite, quadratic

and linear programs (or SQLP) [36].

Although the solution to these optimisation problems has been obtained using various

methods including the Simplex method [5], active set methods [12], augmented

Lagrangian methods [31], and various nonlinear programming schemes, FELA

solutions are most commonly obtained today using an interior point method (IPM). A

brief overview of these approaches is provided below.

1.3 Interior point methods for conic programming

1.3.1 Background
Since the middle of the last century, linear programming has been a powerful

framework for solving optimisation problems in the standard form

16

minimise
subject to

T

=
≥

c x
Ax b
x 0

. (1.19)

or solving the dual problem

maximise
subject to

T

T ≤

b y
A y c

which is usually modified by the addition of the slack variables, s , to convert the

inequality constraints to equality constraints. This modified form of the dual problem

then becomes

maximise
subject to

T

T + =
≥

b y
A y s c
s 0

. (1.20)

Solution of these problems relied heavily on the introduction of the Simplex method by

Dantzig [6] (although von Neumann is believed to have encountered it in his study of

zero-sum two-person games [37]), and most advances in mathematical programming are

still initially developed in linear programming. The Simplex algorithm was found, in

practice, to solve most linear problems efficiently by moving from vertex to vertex on

the boundary of the feasible region based on some heuristic or rule, demonstrating the

combinatorial nature of even continuous problems. Development of the digital computer

enabled larger and more complex problems to be solved that were often intractable only

a few years earlier. With a growing demand for efficient algorithms to be used on these

digital computers, there was a significant increase in research on algorithm complexity

during the 1960s and 1970s. The Simplex algorithm was proven to have a worst-case

iteration complexity which is exponential in the size of the problem, and that examples

exist that force the algorithm to visit a large majority, if not all, of the feasible

boundary’s vertices [38]. Note that this did not reflect practitioner’s experience on many

real-world problems, and the Simplex method has been shown, in a probabilistic sense

(or the expected performance), to be strongly polynomial [39]. The exponential

complexity was, nevertheless, a disturbing feature of the method. This led researchers to

seek out some provably polynomial method (or otherwise prove it does not exist).

17

In 1979, Khachiyan [44] showed that, by progressively reducing the size of an ellipsoid

containing the optimal solution until the desired accuracy was achieved, a linear

program could be solved polynomially in 2()O n iterations, where n is the number of

unknowns. Despite the much improved worst-case complexity, the Simplex method was

still far superior in practice [43]. Even so, the confirmation that a polynomially-bounded

algorithm existed brought renewed attention to the field, and in 1984, Karmarkar [45]

published the landmark paper describing what is now categorised as a primal projective

potential reduction interior point method. This was followed by the recognition that the

origins of Karmarkar’s algorithm could be seen in the logarithmic barrier method for

nonlinear optimisation [46] (indeed, it has since been proven that the basic logarithmic

barrier method for linear programming has polynomial complexity [47]). Shortly

thereafter, Renegar [48] published a primal method tracing the analytic centres of the

successively smaller subsets of the feasible set using Newton’s method. This procedure

was a precursor to the development of the central path for linear programming, although

the concept of the central path first appeared in the context of nonlinear

complementarity problems in 1980 [49], and is now almost universally used in IPM

implementations.

For linear programming, interior point methods have almost wholly supplanted the

simplex and active-set linear programming algorithms, based not only on their better

theoretical complexity, but also on their practical performance [40] (although, the

warm-start ability of the Simplex method means it is still in use in cases where

additional problems with slightly different constraints need to be solved). Through the

use of their self-concordant theory, Nesterov and Nemirovskii [41] extended the

polynomial complexity results to include any case where the a self-concordant barrier

could be identified. The main class of problems are known as conic programs, and

include linear programs (LP), second-order cone programs (SOCP) (which subsumes

quadratic programming, or QP), and semidefinite programs (SDP). An SOCP can be

cast as an SDP (and an LP cast as either an SOCP or SDP), but an SDP has more

expressive power than an SOCP, meaning that some SDPs cannot be cast as an LP or

SOCP. Furthermore, the iteration bounds on the three conic programs increase from LP

to SOCP to SDP, providing incentive to work with the formulation that is most efficient

to solve. The primal conic program is (as described above)

18

minimise
subject to
 0 1,2,...,

i

T

i ki n
=

≥ ∀ =

c x
Ax b
x

 (1.21)

while the dual conic program is

*

maximise
subject to
 0 1,2,...,

i

T

T

i ki n
+ =

≥ ∀ =

b y
A y s c
s

, (1.22)

where the dual Lorentz cones are { }* 0,T= ≥ ∀ ∈s s x x .

Self-concordance is essentially a pair of differential inequalities concerning the first,

second, and third directional derivatives of a three-times continuously differentiable

convex barrier [42]. Alternatively, Peng et al. [43] have shown that by using a self-

regular barrier (requiring a two-times continuously differentiable function, with two

specific inequality conditions), the convergence complexity of the long-step path

following scheme, which is known to be superior to the short-step method in practice,

can get arbitrarily close to the theoretical short-step iteration bound. It is these

conditions on the smoothness of the barrier that ensures the Newton method can identify

points very close to the optimal point of each sub-problem (that is, points lying on the

central path), usually in only one or very few iterations.

Interior point methods are usually either a potential reduction method or a path-

following method, and can act on the primal or dual problem. In both theory and

practice, work is almost entirely focussed on primal-dual methods [50]–[53], which

utilise information from both the primal and the dual problem as an optimal solution is

approached. The potential reduction methods use some measure to evaluate the quality

of points in the feasible set along the search direction, while preventing the unknowns

from prematurely reaching the boundary of the feasible set. Thus, these methods do not

explicitly follow the central path. The path-following methods approximately trace out

what is known as the central path by staying within some neighbourhood of it. The

path-following approaches can be further split between short-step and long-step

methods, with long-step methods being the superior approach in practice, despite the

fact that short-step methods have long had better theoretical iteration bounds, although

19

long-step methods with self-regular barriers have been proven to have arbitrarily close

iteration complexity to their short-step counterparts [43]. These algorithms include the

infeasible path-following methods, which allow some infeasibility in the constraints, but

ensure that feasibility is approached, usually as fast as or faster than the optimal solution

convergence. Another widely-appreciated development for path-following methods was

that of Mehrotra’s predictor-corrector method, as well as a number of other small but

effective implementation details [54]. Mehrotra’s method uses the same factorisation

first as an affine-scaling step, which effectively considers steps parallel to the central

path, and then a combined centering and quadratic corrector step, which combines a

direction towards the central path as well as towards the solution, adaptively selecting a

suitable weighting between the centering direction and a direction approaching the

solution. Mehrotra’s predictor-corrector approach has been extended to include

information from higher-order terms of the Taylor expansion that the direction is based

on. The most notable of these is Gondzio’s [55] multiple centrality correctors for LP

(and later extended to SQLP [56]), which seek to increase the step length able to be

taken in the found search direction rather than trying to follow the central path more

closely.

Most of the common state-of-the-art implementations today embed the problem in a

homogeneous self-dual (HSD) model (see, for example, [27], [36], [57]–[59]). This

reformulated problem is a linear complementarity problem (LCP), where a standard

LCP seeks an () 2, n∈x y such that

 , , , 0 1,2,...,i ix y i n= + ≥ ≥ = ∀ =y Mx q x 0 y 0 , (1.23)

n n×∈M , n∈q , and M is usually restricted to be a 0P matrix [60]. The class of 0P

matrices includes skew-symmetric, positive semidefinite, and positive definite matrices,

among others. These problems have been extensively studied by a Japanese group led

by Kojima [60], and may be solved efficiently by IPMs (Kojima et al. describe a unified

interior point framework using both potential reduction and path-following concepts

[60]). The original embedding of an LP into an LCP by Ye et al. [61] was later

simplified into what is known as the simplified HSD formulation [62]. These were

extended from LP to handle conic programs, leading to the standard form for SOCP to

find a strictly complementary point satisfying

20

() ()

*

0mat mat
0

, , 0, 0
i i

T T

T

i i

τκ

τ κ

τ κ

=

=

 −
 − =
 −

≥ ≥ ≥ ≥

x s e 0

0 c b
c 0 A x s
b A 0 y 0

x 0 s 0

, (1.24)

where

0
i

i T
i

x
=

x

x
,

0

0
mat() i

T
i

i
i i

x

x

=

x
x

x I
,

() () ()()
()

()

mat
mat diag mat ,...,mat

mat
k

k

i

i n

n

= =

x
x x x

x

 ,

1

0

kn

 =

e
e

e
 ,

1
0

0

ini

 = ∈

e

,

and in is size of the i th cone

The coefficient matrix in (1.24) is clearly skew-symmetric and the slacks s and κ

convert the homogeneous system with inequalities to this system of equalities. The

solution to the reformulated problem provides a solution to the original or it indicates

that the original problem is infeasible. The HSD and simplified HSD forms ensure that

the problem being solved will always have a solution, even if the original problem does

not. Note that the simplified HSD formulation does not have any strictly feasible points,

but the HSD formulation does [62].

Generally, the path-following IPMs considered in this Thesis proceed in a similar

fashion to the simplified steps shown below. This primal-dual framework incorporates

the simplified HSD formulation with Mehrotra’s predictor-corrector search direction.

21

() ()

()

0 0 0 0 0, , , , , , , ,

Do until converged to tolerance

 Determine affine-scaling search direction, ,d , , ,d

 Determine step size,

 Determine corrector search directi

aff aff aff aff aff
x y s

aff

τ κ

τ κ τ κ

ε

α

=x y s x y s

d d d

()

() () ()

on, ,d , , ,d

 Determine for combined search direction

 Update , , , , , , , , ,d , , ,d

End

cor cor cor cor cor
x y s

x y s

τ κ

τ κ

α

τ κ τ κ α= +

d d d

x y s x y s d d d

Here, x are the primal unknowns, s the dual unknowns, 0ε ≥ is the convergence

tolerance of the IPM scheme, and α is the step size variable damping factor controlling

the length of the step taken in the Newton direction to improve convergence when far

from the solution. The scheme outlined here assumes a primal-dual starting point that

lies within the neighbourhood of the central path (that is, ()0 0 0, , µ τΦ ≤x s). The search

direction, (), , , ,x y sd dτ κd d d , is computed by solving a system of linear equations of the

form

1

2

3

4

5

1

x
T

T T
y

s

d
r

rd

τ

κκ τ

−
 − =− −

rdA b
rc A I

dc b
rdS X

, (1.25)

where X and S are matrices based on the previous iterates x and s (described below),

and the right-hand-side depends on the residuals in the problem constraints (the

“infeasibility”), some parameters, and whether the predictor or a corrector direction is

being computed. For feasible path-following and potential reductions methods, the

starting point must be feasible (that is, the points must satisfy =Ax b and T + =A y s c).

In development of an approach to solve FELA optimisation problems, it is crucial to be

as efficient as possible at solving both SOCPs and SDPs because of the common

material idealisations utilised in analyses. Thus, an ideal optimisation scheme must be

effective for both formulations or else each formulation must be addressed individually.

22

1.3.2 The search direction in interior point methods
The Newton method for unconstrained optimisation approximates the objective function

f by a second order Taylor expansion

 ' ''1() () () () () ()()
2

T Tf f f f= + − + − −y x y x x y x x y x .

Using the solution to this approximation, a solution estimate to the original problem is

obtained. Close to the solution, Newton’s method exhibits quadratic convergence

behaviour. Unfortunately, away from the solution the behaviour can be somewhat

erratic and so it is usually damped through the use of a damping parameter, α ,

determined by a line search to minimise the objective along the computed search

direction. This ensures the desired convergence behaviour as we approach the solution

while avoiding the undesirable behaviour early in the search process.

The Karush-Kuhn-Tucker (KKT) conditions specify the necessary and sufficient

conditions for an optimal point in the optimisation problem. The Newton search

direction required in the interior point algorithm is the solution obtained from the

perturbed Newton system obtained from the Karush-Kuhn-Tucker equations. The

Newton system for an SOCP is obtained by applying Newton’s method to the mildly

nonlinear KKT system

mat()mat()

T

=

+ =
=

Ax b
A y s c

x s 0
 (1.26)

or to (1.24) for simplified HSD formulation. Applying Newton’s method to (1.26) and

perturbing the system in the third equation by 0µe gives

() ()

()
()

()0mat mat mat

x
T T

y

s µ

 − −
 = − + −

 −

Ax bA 0 0 d
0 A I d A y s c

x 0 s d e x s

. (1.27)

This is the linearised Newton direction for an SOCP. This system has a unique solution

if and only if () ()1mat mat T−A s x A is non-singular [43]. Even for strictly feasible

primal-dual pairs, this is not necessarily true, and, therefore, the Newton search

direction is not well-defined for an SOCP or SDP in general [43]. This is addressed by

23

scaling, where the pair (),x s is scaled to ()1, −Fx F s where F is a scaling matrix. This

scaling is also performed in IPM implementations for LP. There are numerous different

scaling schemes that have been published (for a discussion on scaling for semidefinite

programming, refer to [63]). Common scaling schemes in the literature lead to the AHO

direction [64], the primal or dual HKM direction [65], and the NT direction [66], [67].

The AHO direction assumes an identity scaling (resulting in the AHO search direction

being the solution of (1.27), i.e. =F I). The primal HKM direction is obtained by

setting =Fx e (where e is the vector of 1’s), while the dual HKM direction sets
1− =F s e . By setting 1−=Fx F s , the NT direction is obtained. Interestingly, by

considering which scaling leads to the optimal approximate solution in the sense of

minimising the duality gap plus the barrier function applied to the primal and dual

solution approximations, it is found that the NT scaling is optimal. Furthermore,

Tsuchiya [68], [69] has shown that the NT direction has a lower theoretical iteration

bound than other scaling approaches in long-step path-following methods. It is also the

scaling used in popular SOCP packages (see, for example, [57], [70]).

Defining the scaling matrix F such that it satisfies 1−= =Fx F s v , the scalar

1

T

kn
τκµ +

=
+

x s , and parameterising the central path with γ , applying the NT scaling

leads to the scaled and perturbed Newton search direction for the simplified HSD

formulation allowing for infeasible iterates is given by

() ()

1

2

3
1 1

4

5

1

mat mat

x
T

T T
y

s

d
r

rd

τ

κκ τ

− −

−
 − − − =

A b rd
c A I r

c b d
F s F Fx F rd

, (1.28)

where

24

() ()
() ()
() ()

() ()

1

2

3

14

5

1

1

1

mat mat

T

T Tr

r

γ τ

γ τ

γ κ

γµ

γµ τκ

−

− −

 − + −
 = − − −

−
 −

Ax br
A y s cr
b y c x

r e Fx F s e

. (1.29)

Note that the infeasibility of the solution approximations may be zero for algorithms

that maintain feasibility for all iterations, but this will not be considered further as this

generally requires identifying an initial point which is both primal and dual feasible.

Infeasible iterates are generally allowed in IPM implementations which simplifies

issues surrounding initial points and rounding errors (which can introduce infeasibility,

even for well-conditioned coefficient matrices), and the IPM can progress towards

optimality whilst simultaneously reducing the infeasibility in the approximation.

Mehrotra’s predictor-corrector method provides a worthwhile reduction in the number

of iterations needed by the IPM to reach a solution by first computing a pure Newton

search direction (also referred to as a predictor or affine-scaling direction), achieved by

solving (1.28) with 0γ = , and then taking a corrector step. The corrector step addresses

the fact that the Newton direction ignores the quadratic term () ()mat matx sd d in

linearising the third equation in (1.26). By approximating this term after computing the

predictor direction by () ()mat matp p
x sd d (the superscript p indicating that they are

components of the predictor direction defined as the solution to (1.28) with 0γ =), the

corrector direction is defined as the solution to the system with the same coefficient

matrix as in (1.28) but the right hand side

() ()
() ()
() ()

() () () ()1 1

1

1

1

mat mat mat mat

T

T T

p p
x s

p pd dτ κ

γ τ

γ τ

γ κ

γµ

γµ τκ

− −

− −

− + −

− − −

− −
 − −

Ax b

A y s c

b y c x

e Fx F s e Fd F d e

. (1.30)

The system of equations defined by (1.28) can be reduced to a 3 3× system through

elimination of

25

 ()5
1d r dκ τκ
τ

= − (1.31)

and

 () ()()1 1
4mat mats x

− −= −d F Fx r F s Fd , (1.32)

giving

() 1

2 4

1

5
3

matT
x

y

T T d rrτκ
τ τ

−

 − −
 − =

 − +

0 A c d r F Fx r
A 0 b d r

c b

. (1.33)

Further elimination of xd and yd from the last equation gives the expression for dτ

 ()
1 1 12 2

5 2 4
3

1

mat
T TT Trd rτ

κ
τ τ

− − − − − − − − + = + −

c c cF A F A r F Fx r
b b bA 0 A 0 r

.

 (1.34)

Computing the vectors 1

2

g
g

 and 1

2

h
h

 such that they satisfy

2

1

2

T −
=

g cF A
g bA 0

 (1.35)

and

 () 12
1 2 4

2 1

matT − − − =

hF A r F Fx r
hA 0 r

, (1.36)

respectively, allows dτ to be computed as

5

3 1 2

1 2

T T

T T

rr
dτ

τ
κ
τ

+ + −
=

− +

c h b h

c g b g
. (1.37)

These components can be combined to give

26

 1 1

2 2

x

y
dτ

= +

d h g
d h g

. (1.38)

Finally, dκ and sd can be computed from (1.31) and (1.32), respectively. As has been

shown, the bulk of the computational effort in obtaining the search direction is in

solving systems with the 2 2× block matrix in (1.35) and (1.36). Using a direct method

allows the additional solve to be computed at a significantly lower cost than that of

factorising the matrix, and this same factorisation may also be used for the corrector

direction components. This system is known as the augmented or KKT system. Systems

with a block structure like this are also known as saddle point systems and they arise in

many applications [71]. Note that it is symmetric but indefinite and, in practice, this

KKT matrix is usually reduced further, allowing (1.35) to be solved in two steps as

 2 2
2

T− −= +AF A g b AF c (1.39)

and then

 ()2
1 2

T−= − −g F c A g . (1.40)

Note that equation (1.36) can clearly be reduced and solved in the same way. The

system 2 T−AF A is symmetric positive definite (SPD), and is usually solved using

Cholesky decomposition. In practice (that is, in finite precision on a modern computer),

(1.39) is sometimes symmetric positive semidefinite (or even symmetric indefinite) due

to ill-conditioning in 2F . When the matrix becomes semidefinite or indefinite, the

system gets more difficult to factorise, as the diagonal entries are no longer guaranteed

to be stable pivots [72]. While most implementations, especially for SOCP, use a direct

solver to compute the search direction, in the early iterations of the IPM for LP and

SDP, this system can generally be solved using the preconditioned conjugate gradient

method (often coupled with an incomplete Cholesky decomposition as a

preconditioner), but, because of severe increase in the condition number of the

coefficient matrix, it becomes much more difficult to solve with the iterative methods as

the IPM approaches a solution. Note that the corresponding systems defining the search

directions for SDP are defined in similar way, making allowances for the unknowns

now being matrices instead of vectors and adjusting the algebra used to define the

complementarity condition.

27

If the time to solve each system is not effectively negligible compared with the

factorisation, then it may be advantageous to solve for the g and h variables

simultaneously as

 [] () 12 2 2 1
2 2 1 2 4matT −− − − − = + − + AF A g h b AF c r AF r AF Fx r . (1.41)

By solving for the two variables at once allows more arithmetic operations per load for

the components in the coefficient matrix factorisation (or the coefficient matrix and any

preconditioner in the situation of a preconditioned iterative solver). It also provides

more scope for exploiting the vector-capable hardware in most modern desktop

machines.

1.3.3 Handling free variables
In addition to the conically constrained variables discussed so far, there are those scalar

variables which are not constrained, i.e. fx ∈ . These are known as free variables and

are denoted by a subscript f . The handling of free variables in solving the optimisation

problem can play a significant part in the stability and runtime performance of the

approach used [73]. The standard form of the problem considered in this section is then

minimise

subject to

 0 1,2,...,
i

T T
f

f

i ki n

+

+ =

≥ ∀ =

c x f x
Ax Ex b
x

and the dual

*

maximise
subject to

 0 1,2,...,

i

T

T

T

i ki n

+ =

=
≥ ∀ =

b y
A y s c
E y f
s

.

There are a few different approaches to dealing with free variables in IPMs:

1. Solving the resulting indefinite Newton search direction equation directly. The

coefficient matrix in the augmented system in this case becomes

28

2 T

T

 −

F 0 A
0 0 E
A E 0

, thus the (1,1) block (shown here as 2 2×) is singular and so

any scheme which relies on the non-singularity of this block cannot be used.

This excludes reducing the augmented system to symmetric positive definite

form, instead arriving at the indefinite coefficient system
2 T T−

AF A E
E 0

.

2. Eliminating the free variables from the problem by finding a suitable basis in E

and converting the problem [74]. If we join A and E as []A E , and permute

the constraint matrix and the vectors b and y such that we have the partitions

B B

N N

A E
A E

, B

N

b
b

, and B

N

y
y

, where BE is a suitable (full rank) basis of E

and all other partitions are permuted accordingly. The free variables can then be

eliminated from the problem and the constraint matrix becomes
1

N N B B
−= −A A E E A , the primal and dual objective functions become

()1 1T T T
B B B B
− −+ −f E b c f E A x and ()1T T T T T

B B N B B N N
− −+ −b E f b b E E y , respectively, and

the primal and dual systems of equality constraints become 1
N N B B

−= −Ax b E E b

and T T T
N B B

−+ − + =A y s c A E f 0 . The sparsity of the constraint matrix, and more

importantly the Schur complement matrix
2 2 1 2T T T T T

N N N B B B B N
− − − − −= +AF A A F A E E A F A E E , may be affected severely. Some

solver packages will consider eliminating the free variables in a presolve phase

and eliminate any of them (not necessarily all of them) if the benefits of the

reduced problem size outweigh the cost of a more dense constraint matrix (see,

for example, [75]).

3. By using a “slack” variable to convert each free variable into two linear

variables. The original free variable is then the difference between two linear

variables and so f p nx x x= − , where px and nx are known as the positive and

negative parts, respectively, of fx . This approach often leads to numerical

issues related to variable growth. This is a direct consequence of the

29

unboundedness of the new variables, that is px and nx can be arbitrarily large

for any fx , even if fx is tiny or zero. This is known to cause numerical

difficulties as it leaves the solution set unbounded (that is, both px and nx can

be arbitrarily large but still represent the same value for fx) [76].

4. Perturbing, or regularising, the augmented equations so that the components of

the (1,1) block corresponding to the free variables have a small but non-zero

value, leading to the augmented system

2 T

Tδ
 −
 −

F 0 A
0 I E
A E 0

. This allows the

system to be reduced into the SPD form 2 1T Tδ− −+AF A EE and solved by a

Cholesky solver. This has the obvious downside that the direction is no longer a

true Newton direction but instead an inexact Newton direction (even when

solved exactly), and, depending on the value of δ , this can often impact on

numerical performance. The perturbation value has conventionally been fixed,

although adaptive approaches have been developed that consider global

convergence theory with positive results on SDPs and SQLPs [77].

Unfortunately, the bound on ()kδ guaranteeing global convergence may

necessitate refactorisation and recomputing the search direction if the ()kδ is too

large (possibly more than once) [77].

5. By embedding the free variables in a second-order cone (Andersen, 2002, cited

in [77]). This approach imposes a second-order cone constraint on the free

variable fx such that c fx x≥ , where cx is an upper bound on the magnitude

of fx . Note that this can be extended to grouping some or all of the free

variables instead of using a separate cone for each variable, although increasing

the size of the cones may affect the sparsity of the Schur complement system.

Of these schemes, the last three were considered in preliminary simulations with the

quadratic cone embedding with one free variable per cone providing the best

performance in terms and numerical stability, but not necessarily runtime. Compared to

the perturbation method and the addition of slack variables, embedding the free

30

variables in a second-order cone generally leads to an increase in the number of non-

zeros in the ()1,1 block of the augmented system and also in the Schur complement.

The diagonal “block” associated with a free variable in the ()1,1 block of the

augmented systems are based on the NT scaling matrices for the second-order cone

embedding, which also requires additional work to compute. In contrast, the

perturbation method and addition of slack variables leads to a diagonal “block” (the

perturbation method has a 1 1× diagonal matrix and the addition of slacks leads to a

2 2× diagonal matrix).

31

Chapter 2 Computing the search direction in
IPMs
Traditionally, the systems defining the search direction have been solved using direct

solution methods, specifically, Cholesky decomposition on the normal equations, as this

approach is generally much more robust than iterative solution schemes [78].

Unfortunately, when using state-of-the-art direct solution methods, such as MA57 [79], it

is not uncommon to observe the ratio of storage between the factorisation of A and A

itself to exceed several orders of magnitude. For three-dimensional and large-scale two-

dimensional problems that have refined or large meshes, the time complexity to

construct such large factors and the space complexity involved in storing them is very

expensive. Furthermore, because of the increasingly ill-conditioned nature of the system

defining the search direction as the optimisation scheme nears a solution, direct methods

become susceptible to round-off error, and may not be able to compute sufficiently

accurate search directions.

A potential solution to storage and runtime requirements is sought using iterative

solution methods. These methods may also provide improved solution approximations

when direct methods fail to compute sufficiently accurate search directions. In the

available conic optimisation package SeDuMi [58], if the solution obtained using the

Cholesky decomposition does not satisfy some accuracy requirement, the factorisation

is then used as a preconditioner for the PCG method [80] which attempts to improve the

determined direction. Similarly, in SDPT3 [70], [81] the Cholesky factorisation is always

used as a preconditioner in the symmetric QMR method [82]. Iterative refinement

schemes are also used to ensure that the norm of the residual is small enough to provide

a useful direction [83]. Iterative solution methods attempt to solve a given linear system

without having to fully factor the coefficient matrix, and generally only requires a few

additional vectors to be stored with the most expensive operation performed being

matrix-vector multiplications. This means that, for a given system of dimension n , the

time-complexity is reduced from ()3O n for direct methods to ()2O n for iterative

methods. Similarly, the additional storage requirements are reduced from ()2O n for

direct solution methods to ()O n for iterative schemes. Note that, in practice, sparsity is

32

exploited for both direct and iterative schemes, making the asymptotic complexities

significantly less than that described, although the basic difference in the complexity of

the underlying methods remains.

The convergence of iterative solution schemes depends in a non-trivial way on the

distribution of the eigenvalues and the condition number of the coefficient matrix. The

augmented system and the larger system with coefficient matrix (1.28) defining the

search direction have both positive and negative eigenvalues, which will generally mean

slower convergence will be exhibited by a Krylov subspace solver. All forms of the

search direction generally have increasingly large condition numbers as the IPM

approaches a solution. Thus the use of preconditioners to improve the spectrum and

conditioning of the coefficient matrices is necessary. Unfortunately, the common

algebraic preconditioners (e.g. incomplete factorisations and approximate inverses)

often do not significantly improve convergence due to the presence of indefiniteness,

large condition numbers, a lack of diagonal dominance, and the absence of decay in the

coefficient matrices in question [78]. Where possible, exploitation of the block-structure

and details of the block components is necessary. This leads to the development of

highly specialised preconditioners, which are often not suitable for solving systems

outside their intended use. It is because of these difficulties, and the robustness of the

direct solvers with their high performance on modern computers, that has seen the

widespread use of direct solvers, and in particular sparse Cholesky factorisations along

with the exploitation of supernodes, in state-of-the-art IPM implementations. A brief

overview of direct methods is given below, providing a solid grounding for the

development of effective preconditioners for the iterative methods discussed afterwards.

2.1 Direct solution schemes
The most common direct solution schemes for sparse matrices rely heavily on the

relative ease of solving a triangular system. Popular direct methods such as LU and

LDU factorisations are equivalent variants of Gaussian elimination for reduction to a

product of lower and upper triangular matrices, L and U , respectively (and a diagonal

matrix, D , in the latter case), which are amenable to providing a solution to systems of

the general form = =Ax LDUx b by first solving =Lc b , then =Dd c , and finally

=Ux d . Different computational orders for computing the same (in exact arithmetic)

33

factors provide equivalent approaches to Gaussian elimination while allowing better use

of different hardware architectures for efficiency and performance [84]. These methods

are generally referred to as up-looking, left-looking, and right-looking, and lead to the

three main approaches used in available packages, up-looking for very sparse matrices,

supernodal factorisation, and frontal methods, respectively [85]. The up-looking

methods compute one row of the factors at each step, the left-looking methods compute

one column each step, and the right-looking methods update the active submatrix (the

bottom right submatrix of entries of the rows and columns for which a pivot has not yet

been chosen) with a newly chosen column of L and row of U at each step. For

symmetric systems, simplifications to the general Gaussian elimination schemes

exploiting the symmetric nature of the coefficient matrix as well as the factors generally

result in worthwhile benefits in terms of both the amount of work required to compute

the factors and the amount of memory necessary to store them. Further benefits are also

available for symmetric positive definite systems (those systems satisfying 0T ≥x Ax

for all x of suitable dimension). Orthogonal methods, the most common being QR

factorisation, with orthogonal Q and upper triangular R , are alternative solution

methods, but are generally less efficient in terms of runtime and required storage [86].

Another factorisation scheme is that of the SPIKE algorithm, computing =A DS for

diagonal D and a block-tridiagonal matrix S with identity matrix blocks along its

diagonal [87]. The method is suitable for narrow banded linear systems, and is designed

with parallelisation in mind. Because of the need for a narrow bandwidth, the scheme

will not be considered in this Thesis. A brief overview describing and comparing the

different approaches for symmetric matrices is given. Unsymmetric methods are not

considered given that (1.28)-(1.39) are symmetric, although it should be noted that the

package SDPT3 does use LU factorisation when sufficient accuracy is not obtained

using the symmetric solution schemes.

2.1.1 Gaussian elimination
Gaussian elimination reduces the coefficient matrix to upper triangular form by making

the entries below the diagonal equal to zeros, column-by-column. For symmetric

systems, the required storage may be halved by computing only one of the two factors

(as each is the transpose of the other). In order to preserve the symmetry when

34

reordering, the permutations must be symmetric and so entries on the diagonal remain

on the diagonal after reordering. Because of the possibility of having zero entries on the

diagonal in symmetric indefinite systems, the Bunch-Kaufman factorisation preserves

symmetry by using 2 2× block pivots (where the block pivot satisfies some numerical

threshold), leading to the factorisation T TPLDL P , where P is a permutation matrix

[88]. The algorithm requires (when not exploiting sparsity) 3 / 3n floating point

operations (FLOPs), 2()O n comparisons and 2() / 2n n+ storage for a full-storage

(symmetric) matrix [34].

Fortunately, significant savings may be gained by exploiting sparsity and operating only

on the non-zero entries in the original coefficient system and the resulting factors. This

makes the computer code significantly more complex, but results in huge improvements

in runtime, especially for cases in which there are many fewer non-zeros than 2n .

Although a precise statement on the number of FLOPs and amount of storage required

is not possible for sparse methods in general, the number of non-zeros in the coefficient

matrix provide a rough indication of the work and storage requirements [84].

Unfortunately, a basic implementation of a sparse direct scheme will often not achieve a

significant fraction of the peak machine speed and nor that of its dense factorisation

counterparts. This issue is addressed by identifying portions of the scheme that allow

dense submatrices to be exploited with dense matrix kernels that are implemented on

most systems with standard interfaces in the collections known as BLAS and LAPACK.

Because of their importance in many programs, vendor-supplied libraries such as Intel’s

MKL (Math Kernel Library) have often had significant effort spent on them to ensure

that they operate very efficiently. In addition to the vendor-supplied libraries, open

source libraries such as ATLAS [89] and OpenBLAS [90] use both low-level tuning and

autotuning to achieve high performance on most platforms. Autotuning enables a high

percentage of peak speed to be achieved on most systems by performing numerous tests

upon installation to determine which approaches achieves the highest performance in

each of a wide range of cases, and based on the characteristics of the data supplied at

runtime, the most efficient approach is chosen to perform the computations. The two

most common direct methods for sparse schemes that utilise these dense matrix kernels

are the supernodal and multifrontal methods.

35

2.1.1.1 Direct method overview
In order to exploit dense matrix kernels, it is necessary to know in advance the non-zero

structure of the factor. Define the graph, TL L+
G , which represents the sparsity pattern of

the matrix T+L L , where T n n×= ∈A LL , with vertices 1 i n≤ ≤ and an edge between

vertices i and j if and only if 0ijl ≠ (ignoring numerical cancellation). The graph is

then known to have edge (),i j if a path from i to j exists in the graph of A , AG ,

through vertices less than ()min ,i j [91]. The simplest case including fill-in can be seen

for the matrix with sparsity pattern (× denoting a non-zero and diagonals are numbered

for ease of identification)

1

2
3

× ×
 ×
×

 (2.1)

with the graph of Figure 2.

Figure 2. The undirected graph, AG , of the matrix with sparsity pattern (2.1).

Here, there is a path from node 2 to 3 (and vice versa) via ()1 min 2,3< , and thus 32l

will be non-zero. The graph TL L+
G is shown in Figure 3.

Figure 3. The undirected graph, TL L+

G , of the matrix with sparsity pattern (2.1).

The symbolic analysis used in most solvers, however, uses the elimination tree, T [92].

The elimination tree for L is easily described whereby each node j ’s parent is the first

non-zero in column j of L , and also results from pruning the directed graph LG of L

(that is, removing some subset of edges from LG) such that the reach from any node is

36

not affected. A directed graph of L has an edge from i to j if and only if 0ijl ≠ (and

paths go with the direction of the edges). Given the block form

 11 11 21 11 21

21 22 22 21 22

T T T
T

l l a

= = =

L L l A a
LL A

l a
,

where 11L is assumed known and the bottom row of L , 21l and 22l , is to be computed

(note that 21l and 21a are row vectors). This leads to 11 21 21
T T=L l a and 22 22 21 21

Tl a= − l l .

The sparsity pattern of the bottom row of L is thus defined by the triangular solve with

the last column of A . This is known to be defined by the reach of the set of vertex in

the last column of A on the directed graph of 11L ,
11LG . The reach of a given vertex is

defined as all vertices reachable via a path in
11LG [93]. If, for some i j k< < , there are

non-zero jil and kil , then kjl will be non-zero and there is a path from k to i via j and

thus removing the edge (),k i from LG does not affect the reachable nodes from k , nor

from any nodes that have a path to k [94].

To compute the elimination tree, one builds it progressively starting with the first row

subtree, 1T , and proceeds row-by-row, computing each row subtree, iT [85]. Two

values are kept for each vertex, the parent and the ancestor. The ancestor array is

simply a work vector that eliminates the need to walk through tree parent-by-parent, and

instead skip to the greatest known ancestor of the vertex. Initially, all parents and

ancestors are set to null. The first row subtree is always the trivial subtree containing

just itself. For each subsequent row i of A , each non-zero entry ija will also be a non-

zero (structurally) in L , so the ancestor of j is set to i (as no values greater than i

could currently be an ancestor of j), and if j has no parent then it is set to i . Because

of fill-in, it is then necessary to go to j ’s previously greatest ancestor (before it became

i) to update it’s ancestor to i and it’s parent to i if it is null. This step is continued until

a null greatest ancestor is encountered, at which point the next entry in row i is

considered.

For example, given the matrix with sparsity pattern

37

1
2

3
4

5

× ×
 ×
× ×

 ×
 × ×

,

the row subtrees are shown in Figure 4.

1 2 3 4 5 T T T T T

Figure 4. Example row subtrees.

Combining the row subtrees gives the full elimination tree in Figure 5.

Figure 5. Example elimination tree.

The sparsity pattern of row i of L is then given by the reach from each non-zero of

row i of A in iT . The elimination tree is usually post-ordered, which enables the

number of non-zeros in each column to be computed efficiently, and usually results in

an ordering which often performs slightly better in spite of the fact that there is no

change to the amount of fill-in [85]. The post-ordered elimination tree is computed by a

depth-first search on the elimination tree, giving the post-ordered elimination tree in

Figure 6. As can be seen, this just has 1 and 2 swapped. The row indices of each column

are then usually computed by working through an up-looking Cholesky factorisation

without doing any numerical computation.

38

Figure 6. Example post-ordered elimination tree.

For the left-looking supernodal approaches, the elimination tree is also used to

determine “fundamental” supernodes, defined as groups of adjacent columns that have

identical sparsity patterns [95]. If a node only has a single child and that child has an

identical sparsity pattern, then they can be combined into a supernode. If the column

counts are known, then it is not necessary to check the sparsity patterns but simply

compare the column counts (which will obviously only differ by 1 if they have an

identical sparsity pattern). Knowing the sparsity pattern of the factor enables one to also

consider how similar adjacent column sparsity patterns are and combine them into a

supernode if there is little difference between them, thus trading some additional storage

for a slightly larger supernode [95]. In the example shown, 3, 4, and 5 form a

supernode. The numerical supernodal factorisation routine then uses four level 3 BLAS

routines; the symmetric update (DSYRK), the Cholesky factorisation (the LAPACK

routine DPOTRF), a sparse matrix-matrix product but using the dense kernel

(DGEMM), and a triangular solve (DTRSM).

The frontal method, upon which the multifrontal method is based, exploits the non-zero

pattern, or sparsity of the coefficient matrix and is a right-looking method [96]. The

frontal method was developed for use with finite element codes that eliminate a variable

once all its interactions are assembled into the coefficient matrix [84]. The method can,

however, be used for problems with general matrices. Essentially, the algorithm

operates by adding rows to a frontal matrix, starting with the first. The frontal matrix is

a dense square submatrix in which the indices are those of the rows that have been

added but not yet eliminated. Once a column has become fully summed (a column is

fully summed when no more entries will be assembled into the column), a pivot from

the fully summed column may be chosen and the associated row and column removed

39

from the frontal matrix. Dense matrix operations may be used within the frontal matrix.

The frontal method can also be extended to include multiple fronts that may run in

parallel and is known as the multifrontal method [97], [98]. In the multifrontal method,

the processing jobs are divided among processors based on the elimination tree [98].

The elimination tree allows identification of suitable substructures of the coefficient

matrix that have pivots within them that have no influence on other substructures. This

allows the variables corresponding to those pivots to be eliminated in the assembled

substructure. There can be numerous substructures which are dealt with in a similar

fashion before assembling two of the substructures together and eliminating any pivots

which have no influence outside the newly joined substructure. This process continues

until the newly joined substructure is the whole of the coefficient matrix (now in

factored form).

Supernodal and multifrontal methods form the basis for most of the more sophisticated

and efficient direct solution software packages currently available. Multifrontal method

implementations for symmetric indefinite systems include the Harwell Subroutine

Library’s (HSL) MA57 [79], and the MPI-based parallel MUMPS [99]. PARDISO [100]

implements the multifrontal method, as well as left- and right-looking supernodal

approaches, although there is little difference between the methods in performance

[101]. CHOLMOD [102] includes a left-looking supernodal Cholesky solver that is used in

the popular software package MATLAB [103], and includes an implementation utilising

GPUs for the dense matrix kernels (although this is not available through MATLAB). Left-

looking supernodal techniques are recommended by some authors for solving the

normal equations in interior point method implementations for LPs and SQLPs [40],

[57], [104].

Gould and Scott [105] undertook a numerical comparison between the popular direct

solution packages including MA57, MUMPS, CHOLMOD and PARDISO among others. The

tests were performed on a single processor, meaning no parallelisation benefits were

included. In their indefinite test cases, PARDISO was found to be superior in terms of

factorisation runtime, with MA57 in second, although there was little between the two

when considering the analyse, factorise, and solve phases because of the increased

likelihood of requiring iterative refinement with PARDISO. Memory usage mirrors these

40

results, with PARDISO using the least memory and MA57 the second-least. They note that

the Oblio [106] user documentation reports that for large three-dimensional problems,

left-looking and right-looking factorisations can outperform the multifrontal

factorisation [101]. For symmetric positive definite systems, they report that CHOLMOD

provides the best balance between the analysis phase, the factorisation, and the solve

phase, and recommend PARDISO and MA57 for situations in which multiple solves are

required [105].

2.1.2 Orthogonal factorisation
The orthogonal QR decomposition is the reduction of a matrix to the product of an

orthonormal matrix, Q , and an upper triangular matrix, R . The computation of Q and

R is commonly achieved through modified Gram-Schmidt orthogonalisation or

Householder reflections, although Givens rotations can also be used [34].

The classical Gram-Schmidt orthogonalisation, which fills the i th column of R and Q

at each iteration, is numerically unstable in finite precision arithmetic. By modifying the

calculations so that the algorithm fills the i th row of R instead, it is equivalent to the

classical algorithm producing the same factors in exact arithmetic, but results in smaller

errors with finite precision arithmetic. This is known as the modified Gram-Schmidt

procedure and is the most common orthogonalisation method in use [34]. Unfortunately,

in some cases the rounding errors from the modified Gram-Schmidt scheme can still

affect the orthogonality of the resulting system. By checking whether the norm of

orthogonalised vector is significantly smaller than the pre-orthogonalised vector norm,

the effect of cancellation can be identified, and rectified by performing

reorthogonalisation [107].

Note that Householder reflections are more numerically stable but cannot be stopped

before completion (truncated), and so are less attractive for the construction of

orthogonal bases in iterative solution methods [86]. The ability to truncate the Gram-

Schmidt orthogonalisation suggests an iterative procedure, which, if taken to

completion, is known as the Full Orthogonalisation Method (FOM) [86].

Multifrontal implementations of QR factorisations have been developed, see, e.g.

[108], [109], although Gaussian elimination or a variant of it is commonly used over

41

QR factorisation. This is because Gaussian elimination schemes generally require

approximately half the number of floating point operations compared with QR

factorisations [86].

2.1.3 Reordering
The differences in the number of non-zeros (and, consequently, the amount of work to

compute them) between the factorisation of a sparse coefficient matrix in permuted

form and unpermuted form can be very significant. Unfortunately though, the optimal

ordering is NP-complete [110]. This has led to a large body of work on heuristic

methods for computing orderings that minimise the number of non-zeros in the factored

matrix.

One of the earliest methods is that of Markowitz [111], who proposed choosing an entry

ija as a pivot in a general matrix if it minimises the Markowitz count, () ()1 1i jr c− − ,

where ir is the number of entries in row i , and jc the number of non-zeros in column

j , and it satisfied some numerical criterion to ensure stability of the factorisation. This

method was used to improve the efficiency of factorising the basis matrix in the

Simplex method for linear programming, and is computed as the factorisation

progresses. Markowitz’s scheme simplifies when considering only symmetric

permutations for symmetric positive definite matrices in which the diagonal entries are

known to be stable pivots [72]; symmetry means that ir and ic are the same, so

minimising the Markowitz count is equivalent to finding the minimum row count in the

active submatrix (known as the degree), and positive definiteness avoids the need for

numerical stability thresholds. This simplification is known as the minimum degree

ordering [112], and the related but very efficient approximate minimum degree (AMD)

method which is in wide use today [113], [114]. Markowitz also noted the possibility of

minimising the number of fill-in entries at each step but did not pursue it, favouring the

simpler approach described above. This scheme is now referred to as minimum fill (or

minimum local fill) scheme, and approaches that seek to find a pivot leading to

approximate minimum local fill can be found in use in ordering schemes for interior

point methods [115].

42

The nested dissection orderings are based on a different approach and can be very

effective for some large-scale matrices. Some nested dissection orderings are based on

graph partitionings, with one of the most popular packages for computing nested

dissection orderings being METIS [116]. The nested dissection approach usually follows

a nested bisection recursively, where each bisection seeks a permutation of the matrix

into

11 13

22 23

31 32 33

A A
A A

A A A
.

Here, the separator is the set of indices contained in 33A and the two sets separated are

the indices contained in 11A and 22A , respectively. Each of these two index sets is then

treated in the same way, recursively, down to some specified depth. The partition

generally seeks two sets of the same size with a minimum separator set. When the sets

become small enough, a different ordering scheme is often used such as a minimum

degree or minimum local fill method (METIS uses AMD).

Another method that was proposed early on and still finds some use today in reordering

for incomplete factorisations (described below) is that of the Reverse Cuthill-McKee

(the Cuthill-McKee ordering [117] was found to lead to generally better performance

when it was reversed [118]). This method simply takes the reverse of the permutation

obtained by ordering the nodes in the order that they are visited in a breadth-first search.

While other ordering approaches have been proposed in the literature, those methods

described above constitute the most applicable approaches for the needs considered in

this Thesis.

2.2 Inexact search directions in IPMs for conic optimisation
Instead of computing (practically) exact search directions using direct methods, it may

be advantageous to utilise iterative methods and reduce the accuracy at which the search

direction is determined. This will significantly improve storage requirements, and may

also improve runtime performance. The use of iterative methods would thus allow

problems which are prohibitively large to be solved.

43

Computing the search direction in IPMs using iterative solution methods has been

studied by numerous authors. Indeed, it was even suggested by Karmarkar [45] in his

landmark paper that iterative methods could be used to determine the search direction.

In the literature, there are interior point algorithms using iterative solution methods to

compute the search direction with proven polynomial convergence for both linear

programming and semidefinite programming. An overview of these schemes, as

relevant, is outlined below, but first, a summary of iterative method termination for

general systems of linear equations is presented, which touches on some important

issues when using iterative methods, such as finite termination. But first, the

performance of various linear algebra operations that comprise the major operations in

both direct and iterative methods is discussed.

2.2.1 The relative performance of basic linear algebra operations
When comparing the use of direct and iterative solvers for a practical implementation, it

is crucial to consider the relative performance of the basic linear algebra operations

(referred to as basic linear algebra subprograms, or BLAS). The BLAS operations are

grouped into three “levels” based on the complexity of the operation. So multiplying a

vector of size n by a scalar requires ()O n multiplications and is thus a level one

operation. Multiplying a dense n n× matrix by a vector of size n requires ()2O n

floating point multiplications and additions and so is level two BLAS. Finally,

multiplying two n n× dense matrices together requires ()3O n floating point operations

and is a level three BLAS operation. Because of the way modern computers are

designed and built, the peak achievable speed for each level of these operations varies

considerably. The higher level operations generally have a much greater arithmetic

operation to memory transfer ratio. Consider that, for scaling a vector, each element of

the vector is loaded once to be used in a single multiplication before being stored again.

Including the load of the scaling value, there are a total of 2 1n + memory transfers

(either loads or stores) and just n multiplications, giving a floating point operation

(flop) to memory transfer ratio of
2 1

n
n +

. A dense matrix-vector multiplication requires

at least loading each entry in the matrix and vector once, and storing each element of the

resulting vector once, with 2n multiplications and 2n n− additions, has a theoretical

44

upper bound on the ratio of
2

2

2 2 1
2 2

n n n
n n n

− −
=

+ +
. Obviously, the ratio for 1n > is larger for

the matrix-vector product than the vector scale. Similarly, the upper bound on the ratio

for a dense n n× matrix-matrix multiplication is n times the number of operations in

matrix-vector product, and the vector load and store is replaced by a matrix load and

store, giving
3 2

2

2 2 1
3 3

n n n
n
− −

= . This is greater than both the level one and the level

operations for 1n > , and generally provides the processor with enough computational

work to hide the latency of the memory transfer functions, resulting in an overall higher

number of arithmetic operations per second. Importantly, the triangular factorisation of

a matrix and solving a system of equations with a triangular matrix are both level 3

BLAS operations, and turn out to be governed by matrix-matrix multiplication speed.

When suitably arranged, the factorisation of a dense matrix can achieve near the same

speed as that of matrix-matrix multiplication.

Unfortunately, an intelligent exploitation of sparsity generally requires some extra level

of indexing to avoid working with any zero elements explicitly, which leads to

additional memory operations. This is why the high-performance direct solvers attempt

to arrange the entries of the matrix in such a way that certain portions of the matrix may

be treated as dense. In this way, factorisation of sparse matrices may still achieve speeds

near the dense matrix-matrix multiplication speed [102]. This is in contrast to the

iterative solvers, which, in unpreconditioned form, are comprised of sparse matrix-

dense vector multiplications, dot products, vector additions, and vector scaling – all

level one and two BLAS. Generally speaking, solution of a dense linear system can

achieve around 70% of a machine’s peak speed, while sparse matrix-vector multiply

will often only achieve around 10% of peak speed [119]. This means that an iterative

solver will need to perform less than 7 × fewer arithmetic operations than that involved

in the factorisation and substitution phases of a direct solver in order to solve a system

faster than the direct method (assuming that the sparse matrix-vector multiply

dominates the work performed by the iterative solver). This difference is amplified

considerably if more than one linear system is to be solved, as is the case for the

Mehrotra-style predictor corrector methods. Additionally, it is the relatively high

45

number of transfers in the lower level BLAS operations that form the bottleneck in

highly parallel implementations of iterative methods [107].

Because of this fundamental difference between the different levels of operation, just as

in the high-performance direct solvers using dense matrix kernels to achieve high

speeds, it is imperative that any opportunities to utilise higher-level operations be

exploited. For example, if many iterations are expected when using an iterative solver to

obtain the search direction within a simplified HSD approach or similar, both (1.35) and

(1.36) could be solved simultaneously instead of sequentially (note that there are three

independent right-hand sides in the case of the three-term HSD method). While

performing exactly the same number of arithmetic operations (assuming the same

number of iterations is required for each right-hand side), solving the systems

simultaneously will load the entries of the coefficient matrix from memory half the

number of times compared to solving them one after the other.

2.2.2 Iterative method termination
The nature of iterative methods for large linear systems requires some form of method

termination, which will often be long before full working precision is achieved. Barrett

et al. [120] define a good stopping criterion as one which can:

1. Identify when the error, () () *k k= −e x x , is satisfactorily small.
2. Identify stagnation or near-stagnation.
3. Limit the maximum number of iterations spent by the method.

The first requirement above is the most difficult to identify, as the error is not readily

available without the solution a priori. However, tests can be performed which bound

the error using relations between norms of A , ()kx , b and ()kr . Additionally, a stop

tolerance, s , is required which should be less than one but greater than the machine

precision, which for double precision IEEE Standard Floating Point Arithmetic is
53 162 10− −≈ .

Arioli et al. [121] use backward error analysis to develop a family of termination tests.

Setting

 ()
()

()
max

k

i
k

i

ω =
⋅ +

r

E x f

46

for some matrix E and vector f , the iterations may be terminated when sω ≤ ,

indicating the solution to a nearby system has been found. Specifically,

 ()() kδ δ+ = +A A x b b ,

for δ ω≤A E (component-wise) and δ ω≤b f . Skeel [122] use this scheme to

guarantee the numerical stability of Gaussian elimination through iterative refinement

with =E A and =f b . However, Arioli et al. [121] point out that with its reliance on

the non-zero entries of A , this may not be suitable for iterative solvers as the

convergence of iterative schemes relies more heavily on its eigensystem. They suggest

two alternative choices for E and f . Taking =E 0 and
∞

=f b e , with e the column

vector of all 1’s,

()k

ω ∞

∞

=
r
b

,

which may be generalised to other mutually consistent norm pairs. This test ensures the

residual has been reduced by a factor of the stop tolerance. It is important to note that

the use of b is not equivalent to the use of (0)r for (0) =x 0 . With an initial estimate

(0) ≠x 0 , (0)r may be very large leading to premature termination. However, using

b may lead to the opposite problem in that it may be very difficult to satisfy the test

for ill-conditioned A with x close to the null-space of A , as
1∞ ∞

A x b [120].

This means for good approximations ()kx , ()kr may still be quite large.

By setting T
∞

=E A ee (with
∞

=f b e still) and again generalising to all mutually

consistent norm pairs,

()

()

k

kω =
⋅ +

r
A x b

.

Barrett et al. [120] state that even an order of magnitude estimate of A is sufficient

for the above. Note that this form is generally less strict than the previous test, but both

cases result in a final forward error bound of [120]

47

 () * 1 ()k k−− ≤ ⋅x x A r .

Alternatively, Greenbaum [123] suggests estimating the spectral condition number for

symmetric A , ()κ A , using the Ritz values (the eigenvalues of T), where the 2 -norm

leads to max min() /κ λ λ=A . This allows terminating the iteration process when

()

()()
k

k sκ
−

⋅ ≤
b Ax

T
b

,

where the right hand side is an upper bound to the relative error norm () ()/k ke x .

2.2.3 Iterative method termination within IPMs
Polynomial complexity proofs have been obtained when solving the search directions

inexactly in interior point methods for linear programming [124]–[128]. Mizuno and

Jarre’s [124] approach was quite theoretical and may not be suitable for implementation

directly. Korzak’s [126] method requires iterates to remain feasible once infeasibility is

removed, requiring significant effort in determining the search directions and making it

rather impractical if this situation ever arises. Al-Jeiroudi [129] uses a progressive

tolerance to terminate the PCG method within the Higher Order Primal Dual Method

(HOPDM) interior point solver package. Initially, the tolerance is set to 210− . When the

relative duality gap is less than 310− , the tolerance is reduced to 310− , and when the

relative duality gap falls below 410− , the tolerance is reduced again to 410− . This

tolerance is used to compare the relative residual norm. The polynomial complexity

bounds on these path-following IPMs generally require the Newton direction to be

solved for some forcing term times the duality gap. Monteiro and O’Neal [127] prove

convergence using a general class of iterative solver on the normal equations with a

tolerance proportional to nµ , which is likely to be a difficult target when solving

large-scale problems.

Wang and O’Leary [130] use the progressive tolerance scheme

3

3 3

4 4

5.0 10 for early iterations
min(10 ,10) for middle iterations
min(10 ,10) for end iterations

s g
g

−

−

−

 ×
= ×
 ×

,

48

where g is the relative duality gap from the previous IPM iteration. Interestingly, their

approach switches to a direct method when the iterative method is having trouble

converging. They do not prove convergence using this method, but do provide

successful numerical results. Similarly, Bergamaschi et al. [131] use 210s −= and
410s −= with a maximum number of iterations between 50 and 100 in determining the

search direction for quadratic programs from the augmented equations.

There have also been polynomial convergence results published for solving SDPs with

IPMs incorporating inexact search directions. In the first of such works, Kojima et al.

[132] look to generalise the convergence proof for SDP across a class of search

directions, noting that all search directions are equivalent when the iterate lies on the

central path, and relax the centrality condition to a centrality inequality. Zhou and Toh

[133] provide an iteration complexity for their inexact infeasible IPM the same as the

best known exact complexity. They require the solution to the normal equation form for

the search direction to be solved so as () 1 ()
1

T T k
k kγ ρθ σ

−
≤A AA r , where the kθ terms

are used to drive the iterates towards feasibility and are less than or equal to the

corresponding complementarity gap, the kσ values are defined as a sequence of scalars

with a finite sum, ()1 0,1γ ∈ and () ()()* *1 Tr Tr
n

ρ ≥ +X S are constants, A defines the

equality constraints, and r is the residual vector. Similarly, solving the augmented

equations requires that the same inequality as the normal equation is satisfied, as well as

the residual for the second block equation being less than the right-hand-side in the

normal equation inequality. Solving some large-scale dense SDPs with an iterative

solver to compute the search direction, Toh [134] simply requires that the residual

vector in solving a reduced form of the augmented equations be less than 0.05 times the

norm of the residual of the right-hand-side of the full block 3 3× system of equations

defining the search direction.

There have been no studies solving SOCPs using IPMs with inexact search directions.

However, due to the similarity between LP, SOCP, and SDP, and given the general use

of convergence tolerances for the residual norm being related to the duality gap, it

49

appears that IPMs solving SOCPs with inexact search direction should aim to compute

the search direction within some factor of the duality gap also.

It should be noted that when solving the Schur complement form of the search direction,

the primal infeasibility is affected by the accuracy of the solution [76]. This can lead to

an increase in the primal infeasibility (or stagnation) as the IPM approaches a solution,

even when direct solvers are used, because of the severe ill-conditioning present in the

Schur complement system [76]. Cai and Toh show that if ξ is the residual vector after

solving the Schur system for yd , then the primal infeasibility after taking the step with

step length α is ()1p pα α+ = − +r r ξ for p = −r b Ax , where the superscript + indicates

the value after the step is taken, and the problem is not embedded in a HSD form. While

the impact on the primal infeasibility for a HSD embedded problem will not be the

same, the effect is similar. It is thus reasonable to require the tolerance in the search

direction to be smaller than the primal infeasibility. Similarly, the dual infeasibility

should not increase at any iteration because of poor accuracy in the search direction.

This suggests seeking a search direction with a residual norm at least as small as the

minimum of the primal and dual infeasibilities.

2.3 Iterative solution schemes
Iterative solution schemes can be split into two basic categories, stationary and non-

stationary. Both iterative method classes seek out ()kx with a progressively better

approximation to the true answer. Without a priori knowledge of the true answer, or a

sufficiently close approximation to it, the residual is often used to determine whether

the approximate solution is accurate enough. For each k less than the maximum

number of iterations allowed, () (1)k k−− < −b Ax b Ax if the method is to converge.

Stationary methods are characterised by construction of ()kx of the general form
() (1)k k−= +x Bx c , with neither B nor c depending upon the iterate k [120]. Common

stationary schemes include the Jacobi, Gauss-Seidel, Successive Over-Relaxation

(SOR), and Uzawa methods. The Jacobi, Gauss-Seidel and SOR methods are relatively

simple but often require significantly more iterations (and hence computational effort)

than their non-stationary counterparts. In general, they are also less robust than Krylov

50

subspace iteration methods. The Uzawa method was developed to solve saddle point

systems similar in form to the augmented systems and can be quite efficient.

The non-stationary Krylov methods (we do not consider non-stationary methods that do

not seek a solution in the Krylov subspace) search out an approximation ()kx in the

Krylov subspace, , defined by () (0) (0) 2 (0) 1 (0)span{ , , ,..., }k k−= r Ar A r A r (not to be

confused with the cone constraints of the optimisation problem). In general, the initial

solution estimate, (0)x , will be set to zeros, giving the initial residual, (0)r , equal to the

right-hand side vector, b . The Krylov subspace methods can be categorised into four

general approaches; the Ritz-Galerkin approach, the minimum norm residual approach,

the Petrov-Galerkin approach and the minimum norm error approach [107]. All four,

however, are based on the construction of an orthogonal basis, which is completed using

the Arnoldi algorithm or a simplification of it.

In 1951, Arnoldi proposed an iterative method to solve the eigenproblem λ=Ax x . The

method happens to reduce a given matrix, A , to Hessenberg form while computing an

orthogonal basis for it. That is, the algorithm factors A as T =Q AQ H , or =AQ QH ,

with Q orthogonal and H upper Hessenberg. The Arnoldi method is often

implemented with modified Gram-Schmidt orthogonalisation or the reorthogonalised

version [135]. However, Householder orthogonalisation may be a reasonable alternative

when developing software where robustness is critical [136]. Note that when A is

symmetric, H reduces to a tridiagonal matrix, requiring new basis vectors to be

orthogonalised with the two preceding vectors only. In the following, the partially

constructed matrix (leading to Q) after k steps of the orthogonalisation procedure shall

be denoted ()kV , thus giving () () (,)
T
k k k k=V AV H , a k k× upper Hessenberg matrix.

The Lanczos algorithm [137] is a simplification of the Arnoldi algorithm for symmetric

matrices. When A is symmetric, the Hessenberg H is also symmetric and thus

tridiagonal. This leads to three term recurrences involving the sub-diagonal, diagonal,

and super-diagonal terms of H . This negates the need to store the basis vectors as the

method proceeds. Exploitation of this short three-term recurrence is the basis for the

Lanczos method and the iterative solution schemes Conjugate Gradients (CG) and

Minimum Residual (MINRES).

51

2.3.1 Stationary methods
One of the simpler stationary schemes is the Jacobi method. Given a square linear

system, the Jacobi iteration proceeds by refining the current solution estimate through

(1)

(1)
k

i ij jj kk
i

ii

b a x
x

a

−
≠+

−
=

∑
.

This method requires that the coefficient matrix be diagonally dominant for the process

to converge, where a matrix is diagonally dominant if ii iji j
a a

≠
≥ ∑ for all rows i

[120]. Note that each iteration creates a solution estimate, x , which overwrites x at the

end of each iteration. An improvement on the Jacobi scheme simply updates the

solution estimate in place, thus reducing storage by an n -vector. This is known as the

Gauss-Seidel method, and leads to improved convergence behaviour in many cases over

the Jacobi method [120]. Similar to the Jacobi method, it requires strict diagonal

dominance or symmetric positive definite matrices for convergence.

The SOR method attempts to improve on the Gauss-Seidel method through the use of a

weighting coefficient to accelerate convergence. The solution estimate is updated as
() () (1)(1)k k k
i i ix z xω ω −= + − , with ()kz being the k th Gauss-Seidel iterate and ω the

relaxation factor. However, the estimation of an optimal value for ω is difficult,

requiring a priori knowledge of the spectral radius [34].

The first iterative methods to be developed and applied specifically to saddle point

problems are the Arrow-Hurwicz and Uzawa methods [138]. These methods are still

being actively developed today [78], and can even be found in large scale FELA

implementations (see, for e.g., [31], [32]). Essentially, the Uzawa algorithm attempts to

solve systems of the form

T

= −

x pA B
y qB C

through the updates [139]:

(1) ()

11
(1) () (1) ()

Solve

Update ()

k T k

k k k kω

+

+ +

= −

= + − −

A x p B y
y y Bx Cy q ,

Elman and Golub [139] show that the optimal choice for ω is

52

min max

2ω
λ λ

=
+

,

where minλ and maxλ are the smallest and largest eigenvalues of the Schur complement,

1 T−− −C BA B (where it is possible that =C 0), respectively. To improve the rate of

convergence, the Uzawa method can also be preconditioned, giving the algorithm based

on the two steps

 ()
(1)

(1) () 1 (1) ()

Solve

Update

k T

k k k k
Sω

+

+ − +

= −

= + − −

Ax p B q

p p Q Bx Cy q
,

where SQ is an approximation of the Schur complement. Elman and Golub [139] also

found that when using an iterative method to solve for (1)k+x , the method converges

with a rate close to that of the exact Uzawa method. This kind of method falls under the

category known as the inexact Uzawa method, and includes schemes where an

approximation for A is used in place of the original block. Note that this scheme is

often applied to a saddle-point system of the same form as the augmented system after

regularisation, and so A is no longer trivial to invert or requires good approximate

solves with the Schur complement. The inexact Uzawa scheme is defined by [140]

()(1) () 1 () ()

(1) () 1 (1) ()()

k k k T k
A

k k k k
Sω

+ −

+ − +

= + − −

= + − −

x x Q p Ax B y

y y Q Bx Cy q
.

A common variant of the Uzawa method is the augmented Lagrangian Uzawa method.

This approach instead solves the system

T Tω ω + +

=

xA B B B p B q
yB 0 q

using the Uzawa method. It similarly requires the scalar ω to be set, but now the

parameter affects both the convergence and the difficulty of obtaining the solution in the

first step. Increasing ω speeds up convergence of the Uzawa method while at the same

time making the system in the first step more difficult to solve. It is widely known that

the method converges for
max

20 ω
λ

≤ ≤ and the optimal choice is
min max

2ω
λ λ

=
+

,

53

where minλ and maxλ are the minimum and maximum eigenvalues of the Schur

complement of the augmented Lagrangian system, () 12 T Tω
−

+B A B B B [71].

The Arrow-Hurwicz method is often used in place of the Uzawa method for cases where

solving with A is too expensive [71]. Slow convergence is often experienced using the

method, however, and so some form of preconditioned variant is usually employed

which is very similar to the inexact Uzawa method [71].

2.3.2 Ritz-Galerkin approach
The Ritz-Galerkin approach identifies () ()k k= −r b Ax orthogonal to ()k . The Galerkin

condition with the Krylov subspace basis vectors is equivalent to ()
() ()T k
k − =V b Ax 0 ,

where ()kV holds the first k Krylov subspace basis vectors. Given the initial solution

estimate (0) =x 0 , giving (0) (0)
12

=r r v , leads to the simplification (0)
() 12

T
k =V b r e ,

where 1e is the first canonical vector in k
 . The Galerkin condition then becomes

() () 0 12
T
k k =V AV y r e , for () ()k k=x V y . The Ritz-Galerkin approach leads to the full

orthogonalisation method (FOM) [141] (the Arnoldi method for k n=), and Conjugate

Gradients method [80].

2.3.2.1 Conjugate Gradients
The CG method is one of the most popular iterative solution methods. It is generally

considered the solver of choice for symmetric positive-definite systems (see, e.g.[120],

[142]). However, it is based on the Lanczos method, and thus requires that A be

symmetric. Furthermore, A must be positive definite to guarantee the existence of the

implicit LU factorisation (or to satisfy the positive-definiteness of the A -inner

product), and is not applicable to the indefinite systems arising in the optimisation

process described here. This prevents the CG method from being able to solve the

augmented system, although Dollar et al. [143] show that the preconditioned CG

method with certain preconditioners can be used to solve a projection of this system.

This is discussed further in Block structured preconditioners below.

Wang and O’Leary [130] used the CG method to solve (1.39). However, the CG method

was not used towards the end of the optimisation when the required accuracy is

considerably higher. They use an adaptive scheme that changes from the preconditioned

54

CG solver to a direct method when the optimisation process closes in on the solution

[130].

The CG method updates the solution vector at each iteration by

 () (1) ()k k k
kα−= +x x p ,

for some scalar α and the search direction vector ()kp . The residuals may also be

updated at each iteration with

 () (1) ()k k k
kα−= −r r q ,

where () ()k k=q Ap . kα is chosen as

2(1)

2
() (),

k

k k kα
−

=
r

p Ap

at each iteration to minimise 1
() ()
T
k k

−r A r . Importantly, when A is not positive definite,

() (),k kp Ap no longer defines an inner product (as Tp Ap is not guaranteed to be

positive).

The search direction vector can be updated with

 () () (1)
1

k k k
kβ −

−= +p r p ,

where, using

() ()

(1) (1)

,
,

k k

k k kβ
− −

=
r r

r r

ensures that the residuals are orthogonal (and the search direction vectors are A -

orthogonal). The coefficients computed above correspond to the entries in an LU

factorisation of T , the tridiagonal Hessenberg. Note that the cost of applying the

preconditioner, M , is the cost of solving a linear system with it.

The convergence of the CG method is described by the well-known equation [34]

 () * (0) *12
1

k

k κ
κ

 −
− ≤ −

+ A A
x x x x ,

55

where κ is the spectral condition number, equal to max min/λ λ for λ the eigenvalues of

A , and *x is the exact solution.

Approaches that deal with multiple and sequential right hand sides have been

developed. These methods exploit the identified eigenvectors corresponding to small

eigenvalues, which are typically the reason for the slow convergence of the CG method

[144].

2.3.3 Minimal norm residual approach
The minimal norm residual approach locates ()kx at each iteration such that ()

2

k−b Ax

is minimal. This approach is the basis of the popular methods MINRES for symmetric

indefinite systems, and Generalised Minimal Residual (GMRES) for general systems.

Again, an orthogonal basis is constructed for the Krylov subspace,

 () (1) (1,)k k k k+ +=AV V H .

Noting that the solution estimates are calculated as () ()k k=x V y for some appropriate y ,

minimisation of the residual norm, ()

2

k−b Ax , leads to

 () (1) (1) (1,)
12 2

k k k k kρ + + +− = −b AV y V e V H y ,

where (1)ρ=b v and (0)

2
ρ = r . Noting that the common factor (1)k+V is an

orthonormal transformation, the residual norm can be simplified to

 (1)
1 2

kρ +−e H y .

This will be minimised by solving the least squares problem

 (1,)
1

k k ρ+ =H y e (2.2)

for y . This is usually completed using a QR decomposition of (1,)k k+H .

2.3.3.1 Minimal Residual
The MINRES algorithm minimises ()

2

kr for ()kx in (0) k+x , and exploits the

symmetry of A and the tridiagonal Hessenberg reduction with the Lanczos process in a

similar fashion to CG [145].

56

The MINRES algorithm starts from a variant of the Lanczos relation [146]

 (1) (1) () (1)
1

k k k k
k k kβ α β+ + −

+ = − −v Av v v ,

with () ()
T

k k kα = v Av and 1kβ + chosen such that (1)

2
1kv + = , which, after k iterations,

leads to

 () () () (1)
1

k k k k T
k kβ +

+= +AV V T v e ,

where

1 2

2 2()k

k k

α β
β α

β α

 =

T

.

Then ()kT may be either factored into LQ form with Givens rotations or QR form.

Because of the tridiagonality of T , L and R have only three non-zero diagonals which

provides the basis for exploitation of a symmetric A . Taking the QR decomposition

approach with T=T F R , where F is the product of the Givens rotations, and defining
1

() () ()k k k
−≡W V R , then (0)w is a multiple of (1)v . The remaining columns of ()kW can be

computed through () () ()k k k=W R V , or

() (1) (2)

() 2 3

1

()k k k
k ρ ρ

ρ

− −− −
=

v w ww , (2.3)

where 1 kkrρ = , 2 1,1krρ −= , and 3 2,k krρ −= are the three entries in the k th column of

()kR .

With the QR decomposition of H completed, y can be obtained by solving (2.2) and

updating x . This can be further simplified utilising the entries calculated for Q , leading

to the update equation

 () (1) ()k k k
kα−= +x x w ,

where kα is the k th entry of 1βFe , but can be calculated without explicitly forming

the product of Givens rotations.

57

MINRES minimises the 2 -norm of the residual over the space

 (0) (0) 2 (0) (0)span{ , ,..., }k+r Ar A r A r .

From this, the residual after k iterations is of the form

 () (0)()k
kP=r A r ,

where kP is the k th degree polynomial with value 1 at the origin, minimising the

residual 2 -norm. That is,

 () (0)

2 2
min ()

k

k
kp

p=r A r ,

where kp is the set of all polynomials of degree k or less for which () 1kp =0 . This

leads to the residual norm bounds

()

2
(0) 1,...,

2

min max ()
k

k

k ip i n
p λ

=
≤

r

r
,

where iλ are the eigenvalues of A [123]. Given the simple polynomial ()1
kx

c− , it is

clear that matrices with a tight clustering of eigenvalues around a single value are likely

to exhibit good convergence. Furthermore, indefinite matrices with eigenvalues on

either side of the origin are unlikely to exhibit good convergence because of the

difficulties in approximating zero at a number of points while maintaining the value 1 at

the origin. Even in the simple case when all the eigenvalues are contained within the

two specific intervals [] [], ,a b c d∪ , with the k th degree polynomial

(())()
((0))

l
k

l

T q xp x
T q

= ,
2()()() 1 x b x cq x

ad bc
− −

= +
−

,

l equal to the integer part of / 2k , and lT the l th Chebyshev polynomial, the residual

2 -norm bound becomes

()

2
(0)

2

2

lk ad bc

ad bc

 −
 ≤
 +

r

r
.

58

With the intervals placed symmetrically about the origin, the bound is the same as that

obtained for positive definite A with 2(/)d cκ = . However, the bounds are better for

intervals not symmetric about the origin [123].

In their initial presentation, Paige and Saunders [145] warn that the condition number of

the triangular factor of the Hessenberg approaches that of A , which can lead to errors

in ()kx for ill-conditioned A . Furthermore, Sleijpen et al. [147] show that MINRES

suffers from the propagation of rounding errors proportional to the square of the

condition number. MINRES also requires SPD preconditioners to ensure the

preconditioned system remains symmetric, which significantly limits the available

choices for preconditioning for indefinite A .

2.3.3.2 Generalised Minimal Residual
The GMRES method was developed as a robust algorithm for solving linear systems in

which the coefficient matrix is not positive real and symmetric [141]. Because of the

nonsymmetric A , the GMRES method must use the Arnoldi method, and uses Givens

rotations to construct the QR factorisation and solve for y in a similar fashion to

MINRES. The updated solution estimate is then calculated as () ()k k=x V y , which

unlike MINRES, requires all previously computed Krylov subspace basis vectors, ()kv .

The increased computational burden and storage costs involved with the use of all basis

vectors, ()kv , suggest using a restarted version of GMRES, denoted GMRES(m) [141].

In this scheme, the GMRES algorithm is restarted every m iterations. However, van der

Vorst [107] points out that the choice for m is difficult, as the speed of convergence

may exhibit significant difference for nearby values of m . Embree [148] provides an

example where convergence occurs in three iterations for 1m = , while for 2m = ,

GMRES stagnates. Saad [136] also states that GMRES(m) can suffer from stagnation

for semidefinite and indefinite coefficient matrices, while noting the prohibitive cost of

attempting full convergence in n steps.

The original GMRES scheme used Givens rotations to decompose the upper

Hessenberg, H , into QR form, and thus the entries denoted ijh are actually entries of

the triangular matrix, R .

59

There are a number of variants based on GMRES, including flexible GMRES [149],

simpler GMRES [150], loose GMRES [151], GMRES with Householder

transformations [152], and the hybrid GMRES*. Flexible GMRES allows a different

preconditioner to be used at each iteration. Simpler GMRES avoids construction of the

upper Hessenberg factorisation involved in the GMRES algorithm, but the cost of doing

so negates the benefit [107]. Loose GMRES (LGMRES) arose from Baker et al.’s [151]

observation that the restarted residuals in GMRES(m) were alternating direction in a

cyclic fashion. They propose an algorithm to identify such a situation and prevent it

from occurring, leading in some cases to significant savings in iterations, although the

improvement was not as significant when using preconditioners. GMRES* utilises an

inner iteration using another iterative solution scheme [153], and is known as GMRESR

when GMRES is used for both inner and outer iterations. There are also various

methods that give the same solution approximations at each iteration in exact arithmetic

as GMRES; these methods include Vinsome’s ORTHOMIN (cited in [107]), Orthodir

[154] and Axelsson’s method [155]. These methods require more work per iteration and

are generally less robust than GMRES, although ORTHOMIN can be used effectively

in a truncated fashion (in which case it is no longer equivalent to GMRES) [107].

In general, there is no neat convergence relation for GMRES as there is with CG.

Specifically, Greenbaum et al. [156] have shown that any non-increasing convergence

curve is possible for GMRES, and that eigenvalues and the condition number are not

necessarily indicative of the expected convergence with GMRES. Saad [157] provides

some methods for relatively good upper bounds on the residual norm for the early

stages, but they are not as sharp once GMRES (or MINRES) begins superlinear

convergence.

2.3.4 Petrov-Galerkin approach
In seeking short recurrences similar to MINRES and CG but for nonsymmetric A , one

can construct the biorthogonal bases, V , for (1)(;)k A v , and W , for (1)(;)k TA w ,

where the biorthogonality condition requires ,i j ijδ=v w . The biorthogonal sets of

vectors lead to methods such as Quasi-Minimal Residual (QMR) [158](Freund and

Nachtigal 1991) and Bi-Conjugate Gradients (BiCG).

60

The Bi-Lanczos method [159] starts from the Lanczos relations () (1) (1,)k k k k+ +=AV V H .

Seeking a three-term recursion, multiplying both sides by ()
T
kV will not result in a

tridiagonal ()kH . Thus, given () () ()
T
k k k=W V D for some ()kW , where ()kD is the matrix

with entries 0ijd ≠ for i j= and zero otherwise. Multiplying the Lanczos relation with

TW from the left now gives

 () () () ()
T
k k k k=W AV D H .

For ()kH to be tridiagonal and thus provide the three-term recurrence, () ()
T T
k kV A W must

also be tridiagonal. This form suggests generating the iw with TA in much the same

way as the iv are generated with A in the Lanczos process [107]. This leads to ()kW

being the set of vectors, iw , biorthogonal to ()kV , i.e. ,i j ijδ=v w .

In 1976, Fletcher (cited in [107]) set () ()()T
k k− =W b Ax 0 , leading to (,) (0)

12

k k =T r e

and () ()k k=x V y for the BiCG method. However, BiCG suffers from highly irregular

convergence (van der Vorst 2003), which can affect the attainable accuracy [86], and as

such is not considered further here. The QMR method is discussed below.

In the above, two breakdowns can occur; iv or iw can be set to 0 , or () () 0T
k k =w v for

non-zero iv and iw . The latter is known as a serious breakdown [86]. This serious

breakdown can be avoided by making successive Krylov subspace basis vectors block-

wise biorthogonal as shown by Freund and Nachtigal in their look-ahead variant of

QMR [158]. Alternatively, the method can simply be restarted when a small diagonal

element is identified. However, this method forgets the Krylov subspace basis that has

been constructed and thus loses the potential for superlinear convergence [107].

In BiCG and the iterative methods based on BiCG, the residual vector is updated via a

relation similar to

 (1) () ()k k k+ = −r r Aw ,

with the solution estimate being updated in a similar fashion as

 (1) () ()k k k+ =x x w .

61

The multiplication in the residual update can and does lead to differences between ()kr

and ()k−b Ax , which presents a difficulty in testing for convergence with the updated

residual vector. Because of the importance of ()kr in defining T throughout the

iterative procedure, replacing the residual vector with ()k−b Ax can increase the

chances for stagnation by ignoring the previous rounding errors [107].

2.3.4.1 Quasi-Minimal Residual
The QMR method [158] is a variant of the BiCG method exhibiting smoother

convergence and avoids one of the breakdown conditions in BiCG [107].

As with the minimal residual approach, the norm of the residual can be rearranged to

 () () (1) (1) (1,)
12 2 2

k k k k k kρ + + +− = − = −b Ax b AV y V e V H y ,

which, because (1)k+V is no longer orthonormal, gives

 () (1) (1,)
12 2 2

k k k kρ+ +≤ −r V e H y . (2.4)

The second norm on the right-hand side of (2.4) is the norm of the quasi-residual. To

update ()kx , a y is sought to minimise this quasi-residual, resulting in the QMR

method.

Although the QMR method does not minimise the true residual, Nachtigal [160] has

shown that the residual obtained with the QMR method, ()k
Qr , can be related to the

GMRES residual, ()k
Gr , by

 () (1) (1,)
12 2 2

k k k k
Q ρ+ +≤ −r V e H y ,

which appears promising, although the condition number of (1)k+V cannot be bounded a

priori [123].

In addition to the original QMR method [158], there exists a variant of QMR based on

coupled two-term recurrences, avoiding the generally less robust three-term recursions

[161], a transpose-free QMR method (TFQMR) [162], and the Symmetric QMR

algorithm [82]. The Symmetric QMR method avoids the need for SPD preconditioners,

which is well-suited to the needs of solving symmetric indefinite systems. Various

authors have found the Symmetric QMR method to be the solver of choice for

62

symmetric indefinite problems when the preconditioned CG method cannot be used,

see, e.g. [163], [164].

2.3.5 Minimal norm error approach
The minimal norm error approach seeks to minimise the norm of the error,

() () *

2 2

k k= −e x x . For T=A A , this approach leads to the Symmetric LQ

(SYMMLQ) method [145], while for the general case it leads to the Generalised

Minimal Error (GMERR) method [165]. A brief overview of SYMMLQ is provided

below.

2.3.5.1 SYMMLQ
Paige and Saunders [145] present the SYMMLQ method with MINRES as an

alternative to CG for indefinite systems, using () () ()k k k=T L Q for lower triangular ()kL

and orthonormal ()kQ :

1

2 2

() () () 3 3 3
T

k k k

k k k

γ
δ γ
ε δ γ

ε δ γ

= =

T Q L

.

This provides short recurrences in a stable factorisation which exists for indefinite A .

To compute approximate solutions to a linear system, SYMMLQ forces the residual to

be orthogonal to the Krylov subspace in a similar fashion to CG. Similar to MINRES,

SYMMLQ requires positive-definite preconditioners but may converge much more

slowly than MINRES for ill-conditioned systems [107].

2.3.6 Hybrid methods
Hybrid methods combine various components of the approaches discussed above. The

Stabilised Bi-Conjugate Gradient (Bi-CGSTAB) [107] is one of the more common of

the hybrid methods and is discussed below.

2.3.6.1 Stabilised Bi-Conjugate Gradients
Similar to QMR, the stabilised bi-conjugate gradients (Bi-CGSTAB) method introduced

by van der Vorst [166] seeks short recurrences for general matrices while exploiting the

desirable convergence properties of the Conjugate Gradient Squared method (CGS)

63

[167](Sonneveld 1989), but stabilising its erratic behaviour. The Bi-CGSTAB method is

essentially the combined effect of Bi-CG and GMRES(1).

CGS is another hybrid method, and relies on the residual vector being a function of the

polynomial with the Bi-CG residual vector written as () (0)()k
kP=r A r and the shadow

residual () (0)()k T
kP=r A r , where the shadow residual results from the iw components

of the biorthogonal set. Because of the biorthogonality between the iv and the iw ,

 () () (0) (0) (0) (0), () , () () () , 0j i T
j i i jP P P P= = =r r A r A r A A r r

for all i j< [107]. The shadow residuals can thus be constructed as

 () 2 (0)()k
jP=r A r ,

which avoids the computation with TA [167]. Because of the squared term in

calculating the residual, CGS can converge more rapidly than Bi-CG. The method

performs most effectively when A contains a uniform distribution of eigenvalues over

some interval not containing the origin, but can, in practical cases, exhibit significantly

more erratic behaviour than Bi-CG [107]. Fokkema et al. [168] note that the good

approximation in the direction of eigenvectors associated with the extreme eigenvalues

when using CGS is well-suited for solving the linear systems arising from Newton’s

scheme for nonlinear equations.

However, because of the serious effects of irregular convergence (residual norm varying

in magnitude in subsequent iterations), a more smoothly converging variant is desirable.

The Bi-CGSTAB method smooths the convergence by modifying (0)() ()j iP PA A r to

 () (0)() ()k
k kQ P=r A A r ,

where kQ is a polynomial of the form 1 2() (1)(1)...(1)i iQ ω ω ω= − − −z z z z and iω are

suitable constants. In Bi-CGSTAB, the kω are chosen to minimise the residual ()kr

[166]. This leads to

 () (1) (1)
1()()k k k

k kω α− −
−= − −r I A r Ap

and

64

() (0)

1
() (1)

()

()

k
k
k k

k k

T
β ω

−

−

=

= + −

p A r
r I A p

,

for scalar kα and kβ , the diagonal and super-diagonal entries of T , respectively.

Bi-CGSTAB is a finite method, terminating in at most n steps in exact arithmetic

[166]. However, the method can suffer the same breakdown conditions as CGS and

BiCG where some kρ or ()T kr v is zero or essentially so. Implementations of the

method should check for these occurrences and either restart with a different r or

restart with a different solution method [107].

Variations on BiCGSTAB have been developed. Sleijpen et al. [169] present various

methods based on BiCGSTAB(l), where l performs the same function as m in

GMRES(m). Zhang [170] presented the generalised product Bi-CG (GPBi-CG)

method. However, GPBi-CG is based on a three-term recursion which is considered less

stable numerically then two-term recursions [107].

2.4 Preconditioners for iterative linear solvers
Preconditioners have become the focus of much recent computational science research,

and constructing methods for transforming a problem that appears intractable into

another whose solution can be approximated is likely to remain a prominent research

topic for the foreseeable future [86]. With regards to solving linear systems by the use

of iterative methods, Chen [171] states that devoting effort to the construction of

improved preconditioners is likely to yield better results compared with searching for a

more effective solution method. Although preconditioners have been effective for many

problems, the preconditioning of ill-conditioned matrices and symmetric indefinite

matrices is still largely an open problem (see, e.g. [71], [78], [107]).

Preconditioners generally attempt to improve the condition number of the coefficient

matrix, while clustering the eigenvalues around one (or at least away from zero).

Preconditioning can be of the form =MAx Mb (left preconditioning) or 1− =AMM x b

(right preconditioning), or mixed preconditioning, 1
L R R L

− =M AM M x M b . The

preconditioner M will either seek to replicate A or its inverse, 1−A . Note that if

≈M A , then the inverse 1−M must be used in place of M in the preceding forms. In

65

the case of ≈M A , M must be easily invertible (or in a form allowing easy solution as

in the case of factorisation, e.g. = ≈M LU A leads to solving =Ax b as =Lc b ,

=Ux c). For 1−≈M A , application of the preconditioner yields ≈MA I (for right

preconditioning). The common preconditioners can be categorised into the following:

• Matrix splitting and incomplete factorisation preconditioners.

• Approximate inverses.

• Block structured preconditioners.

• Domain decomposition and multilevel methods.

There are also more exotic approaches such as support graph or Vaidya-type

preconditioners [172], [173], and wavelet-based methods [171]. Both of these methods

have achieved success in preconditioning discretised PDE problems.

In solving problems with indefinite coefficient matrices, the standard algebraic

preconditioners of the incomplete factorisations and approximate inverses are often

found to be less effective than those methods taking into account the block structure of

the symmetric indefinite and general systems defining the Newton search direction. Part

of the reason for this is the highly irregular behaviour as the preconditioner becomes

progressively closer to the “exact” preconditioner. This may be at least partially

explained by the fact that as the negative eigenvalues of the preconditioned system

become progressively closer to 1, some of them end up closer to zero than with a more

sparse approximation resulting in an increase in iterations to convergence [107]. The

standard algebraic preconditioners do provide ideas for approximating blocks in the

block structured and constraint preconditioners. Domain decomposition and multilevel

methods are used primarily for the solution of partial differential equations. Domain

decomposition splits the domain into subdomains, with each being solved independently

and the solutions being combined in periodic global solves. Multilevel methods seek to

use coarse grid approximations to smooth specific components of the error and

interpolating the solution estimate back to the finer grid. Neither of these methods are

directly applicable to the problem at hand, although the algebraic multilevel method has

allowed some of the ideas to be utilised when no explicit grids are present, although the

method was developed for M-matrices and its performance generally degrades as the

66

coefficient matrix becomes further from an M-matrix. An M-matrix is a symmetric

positive definite matrix with positive diagonal entries and non-positive off-diagonal

entries.. It should be noted that the Vaidya-type and support graph preconditioners

generally outperform incomplete decompositions for Stieltjes and symmetric diagonally

dominant matrices [173], where a Stieltjes matrix is a symmetric positive-definite

matrix with non-positive off-diagonal entries. Because of their limited applicability,

they are not considered further.

Interestingly, Bocanegra et al. [174] suggest using different preconditioners for different

stages of the optimisation process. By using different strategies over the course of the

optimisation process, this allows the utilisation of cheap and efficient preconditioners in

the early stages where the search direction may not need to be as accurately determined

as the later stages, for which more computationally-heavy preconditioners may be used

to achieve greater solution accuracy.

2.4.1 Matrix splitting and incomplete factorisation preconditioners
Matrix splitting preconditioners are based on taking some representational part of A

such as a diagonal band and exploiting it. Such preconditioners can be very cheap to

construct, require little to no storage, and can be easy to use. Common methods include

the Jacobi, triangular, banded and banded arrow preconditioners. Similarly, incomplete

factorisations attempt to approximate the main characteristics of A , but in a more

efficient form for solving =Ax b . While more complex and expensive than the simpler

splittings, the incomplete LU (ILU) factorisation is one of the most popular of the

standard algebraic preconditioners, and has proved to be a fairly robust preconditioning

method. A similar preconditioning method is the incomplete QR factorisation.

2.4.1.1 Jacobi preconditioner
The point Jacobi preconditioner consists of only the diagonal entries of A . It is cheap to

construct, store and implement, assuming the diagonal elements of A are readily

accessible. Unfortunately, more sophisticated preconditioners are likely to yield a more

significant improvement in terms of iterations [120], although for large systems on

parallel hardware, its simplicity and lack of required communication may give this

preconditioner an advantage in terms of solve time. The block Jacobi preconditioner

generalises the point Jacobi idea to include diagonal blocks of A .

67

2.4.1.2 Incomplete decompositions
Incomplete LU decompositions [175] were initially used with symmetric non-singular

matrices with non-positive off-diagonal entries known as M-matrices where their

existence has been proven [107], but have become a fairly robust form of

preconditioning for large classes of problems [78]. The family of methods operate much

the same as a complete factorisation and hence ≈M A , but will not store all non-zero

entries of the factors. All incomplete decompositions follow some dropping scheme that

dictates which entries are kept and which are discarded. If the set of entries in the

incomplete factor is denoted S , then the incomplete decomposition proceeds as follows.

 ()

1: , 1: , , 1: ,

2

for 1,
 for 1, 1

 end for

 for 1,

 if

 end if
 end for
end for

j m j j m j k j j m k

ii ii

ij

ij
ij

ii

ii ii ij

j m
k j

a a a a

a a
i j m

a

a
a

a
a a a

+ + +

=
= −

= −

=

= +

∈

=

= −

S

Early approaches used include dropping any entry that doesn’t occur in the sparsity

pattern of A (known as ()ILU 0), or a generalisation of this approach that discards

non-zeros in the factors based on the level-of-fill (known as ()ILU l , where l is the

level-of-fill parameter). These approaches reportedly work well for some problems

[171], but may not exist when working with matrices that are not diagonally dominant,

M-matrices, H-matrices, or Stieltjes matrices. An H-matrix is defined as having a

comparison matrix that is an M-matrix, where the comparison matrix is formed by

taking the absolute value of the diagonal entries and the negation of the absolute value

of the off-diagonal entries. The modified ILU (MILU) adds the discarded entries to the

diagonal value of U , which, for some problems, meant that some property (e.g. energy)

68

was conserved [171]. A variant of MILU for grid-based problems adds a constant times

the square of the mesh size to the entries that is a significant improvement for certain

problems [107].

To improve the robustness of the approach, the factors are computed while dynamically

choosing a sparsity pattern based on row or column count restrictions and fill

thresholding, where values below some threshold, τ , are discarded. These two rules are

combined in the popular incomplete LU threshold with level-of-fill control (

()ILUT , pτ) preconditioner, with inputs p , the maximum number of entries per row in

the factors, and τ , the value threshold for fill-in [176]. In order to guarantee the

existence of the decomposition, it is still required that the coefficient matrix be an M-

matrix, Stieltjes matrix, H-matrix, or a generalised diagonally dominant matrix [171],

although Chow and Saad [177] note that with the use of pivoting, reordering, diagonal

perturbations and scaling, ILU preconditioning can still be applied relatively

successfully to indefinite problems. A more recent development in ILU preconditioning

provides control over the growth of the inverse of the factors [178].

An alternative to ILU which works for general nonsingular matrices is the incomplete

QR and incomplete LQ factorisations (ILQ). Bai et al. [179] present an incomplete

QR factorisation using incomplete Givens orthogonalisation (IGO), the construction of

which is more easily parallelised than ILU-type preconditioners. Similar to the

incomplete LU decompositions, they present variations, generalised with the GTIGO(

τ , p) which includes threshold and level-of-fill controls. Saad [180] presents the ILQ

method based on modified Gram-Schmidt orthogonalisation, showing that the

application of CG to the normal equations (CGNE) preconditioned with ILQ is a more

robust method for an indefinite problem than other common methods (the CGNE

approach sets T=x A y and solves T =AA y b).

2.4.2 Approximate inverses
Approximate inverse preconditioners seek to replicate the inverse of A , giving ≈MA I

. The two common methods for calculating approximate inverse preconditioners are the

Sparse Approximate Inverse (SPAI) method, and the Approximate Inverse (AINV) or

Factorised Sparse Approximate Inverse (FSAI) methods.

69

2.4.2.1 SPAI
SPAI preconditioners are constructed by minimising −AM I [171]. Using the

Frobenius norm naturally decouples the problem into n least squares problems to solve

for the column vector jm

2

min
j

j j Fm
−Am e , (2.5)

with je the j th unit vector. Solving for 1,2,....,j n= leads to []1 2, ,..., n=M m m m .

Gould and Scott [181] tested two different approaches based on this method for

nonsymmetric matrices, and found that they may not perform as efficiently as other

popular standard preconditioning techniques when executing serially. SPAI

preconditioners do provide alternatives for problems which fail using other schemes.

Note that (2.5) represents one of n independent problems and, as such, is trivially

parallelisable. Grote and Huckle [182] developed one of the more effective Frobenius

norm minimisation methods with their SPAI preconditioner.

2.4.2.2 AINV and FSAI
The other popular approximate inverse methods are published under the name AINV for

the general case [183] and FSAI for a symmetric A [184]. Both methods construct the

preconditioner

2

,
min T

F
−

W Z
W AZ I ,

where W and Z are upper triangular matrices satisfying level-of-fill and threshold

controls. Note that for the symmetric case =W Z . Similar to ILU, these

preconditioners are also subject to breakdown, and sometimes the system is solved for

the coefficient matrix α+A A for some scalar α instead [171]. Benzi and Tůma [183]

found that AINV was about as effective as ILU(0) for their range of nonsymmetric test

problems, while the implicit factorisations were generally more robust in large ill-

conditioned systems with entries slowly decaying away from the diagonal [185]. The

SPAI approach is inherently more parallelisable than the AINV and FSAI techniques,

but is computationally more expensive [185].

70

2.4.3 Block structured preconditioners
Block structured preconditioners are block-diagonal or block-triangular matrices which

exploit the structure of the KKT system. In this section on block structured

preconditioning, the 2 2× block system considered is

T

=

x pA B
y qB 0

.

These preconditioners generally require the approximation of A and the Schur

complement, 1 T−= −S BA B (with a zero (2,2) block as in the KKT system). They are

generally categorised as either block diagonal or block triangular, both of which are

discussed below.

2.4.3.1 Block diagonal preconditioners
The basic block diagonal preconditioner for the augmented system is

ˆ

ˆ

=

A 0
M

0 S
,

where Â and Ŝ are suitable non-singular approximations of A and S , respectively.

The explicitly preconditioned matrix is then

1

1

1

ˆ

ˆ

T−
−

−

=

I A B
M A

S B 0
.

Kuznetsov [186] and Murphy et al. [187] show that this preconditioned system has

three eigenvalues (assuming A is non-singular); 1 and ()1
2 1 5± . This means that

GMRES would take only three iterations to solve the KKT equations. Unfortunately,

constructing the preconditioned system would be as expensive as directly computing its

inverse [71]. Hence, an approximation to the Schur complement must be made. Note

that in computing the search direction in the IPM, no approximation of the inverse of

the (1,1) block needs to be made as it can be computed for a second-order cone of

dimension in in ()iO n operations when using NT scaling [57], similarly, the scaling

matrix for the linear cone is diagonal and so inversion is trivial.

Phoon et al. [163] generalise the preconditioner to

71

ˆ

ˆα

=

A 0
M

0 S
 (2.6)

where α is some non-zero scalar (possibly negative), and Ĥ and Ŝ are approximations

of the (1,1) block and the Schur complement, respectively. They found that the choice

of α can have a significant impact on the number of iterations when using a cheap

approximation to the (1,1) block, contrary to its theoretical behaviour. The optimal

choice for α is 4− , which reduces the number of eigenvalues (without approximating

the (1,1) block) to two; 1
2 and 1 . Toh [134] also uses this preconditioner (with 20α = −

) on some large scale (but dense) SDPs using an IPM with the symmetric QMR iterative

solver, achieving comparable results to some first-order methods thought to be superior

for large scale SDP problems. Note that their implementation sets ˆ diag()=A A , and îjs ,

the entries of Ŝ , are calculated as

2

1

ˆ
n

ji
ij

j jj

b
s

a=

= ∑ .

This generalised Jacobi preconditioner resulted in smaller eigenvalue clusters, where the

preconditioned system had eigenvalues in the right half-plane only. Such a

preconditioner appears attractive due to the ease of construction and solution with it.

2.4.3.2 Block triangular preconditioner
Upper and lower block triangular preconditioners of the form

ˆ

ˆ

T

U

=

A B
M

0 S
 and

ˆ

ˆL

=

A 0
M

B S

can be transformed to inverse factors to solve systems of the form =Mv w as (using

the upper triangular UM)

1

1

ˆ
ˆ

T−

−

= −− −

I 0I BA 0v w
0 I0 I 0 S

,

72

which is only more expensive than the full block-diagonal preconditioner by a

multiplication with TB [78]. Setting ˆ diag()=A A and 1ˆ ˆ T−= −S BA B is a common and

effective preconditioner for a diagonally dominant Â [78].

2.4.3.3 Constraint preconditioners
Constraint or indefinite preconditioners exploit a block structure similar to the

augmented system being solved. This provides more scope for domain-specific

knowledge to be incorporated into the preconditioner, and has proven effective for

solving saddle point systems [71]. In using preconditioners to solve indefinite block-

structured systems, Bergamaschi [188] recommends dealing with the augmented system

(rather than the normal equations) in order to provide more freedom in the construction

of the preconditioner, although there are still occasions when the normal equations are

solved with preconditioners derived from the augmented system. However, using the

exact constraint preconditioner may still be computationally expensive, which leads to

the idea of inexact constraint preconditioning. Consequently, a number of authors have

focussed on inexact constraint preconditioners of the form

ˆ
T

=

A BM
B 0

,

where Â is again some approximation to A , for mixed finite element schemes, and

linear and nonlinear optimisation (see, e.g. [129], [188]–[192]). Rozložník and

Simoncini [193] and Haws and Meyer [190] approximate the (1,1) block with the

identity matrix, although in solving the KKT systems, approximating A with the

identity matrix is often not sufficiently effective [131], [164], [194]–[196]. Instead, A

may be approximated using AINV or an incomplete Cholesky factorisation. AINV

provides the inverse factors of the approximation, 1 1T
A A

− − −≈L L A , allowing relatively

cheap solves, while the incomplete Cholesky provides an approximation to the factors
T

A A ≈L L A . Using AINV, the Schur complement is then approximated by taking the

incomplete Cholesky decomposition T T T
S S= ≈S BZZ B L L (the matrix Z here arises in

the AINV computation described above). The inverse of the preconditioner can then be

formed as

73

1 1

1
1 1 1

T T T T
S

T T
S S A S

A A A A

A

− − − − −
−

− − − − −

 −
= −

L L L B L L 0
M

0 L L BL L L
,

an upper and lower triangular matrix. This method was found to be more robust than

ILU and diagonal scaling (using the diagonal of the preconditioner of (2.6) by Phoon et

al. [163]) [164], [196].

Bergamaschi et al. [131] extended the inexact constraint preconditioning scheme and

mitigated the effects of memory-intensive inverses. They noted that anything more

simple than a diagonal matrix to approximate A will be ineffective, and looked for

ways to approximate the off-diagonal blocks B and its transpose, as B̂ and ˆ TB ,

respectively, where B̂ has full row rank. B̂ is defined through the splitting ˆ = −B B E ,

where the entries of E are defined as

if and

0 otherwise
ij ij j b

ij

b b i j n
e

τ < − <=

b
,

where τ is a drop tolerance, bn is a band size, and jb is the j th column of B .

Dollar et al. [197] organised a number of these efforts into a framework, and showed

that using some of them, the projected form of the augmented system may be solved

with the preconditioned CG (PCG) method. Essentially, by implementing a non-

standard inner product in the PCG algorithm, one can solve systems with an indefinite

coefficient matrix. For this to succeed, the preconditioner must be nonsingular, and an

additional preconditioning matrix, P , is SPD, such that 1−PM A is symmetric and

positive definite. This means that 1−M A is positive definite in the inner product ,
P

 .

Thus, the saddle point system can be solved using CG to solve the equivalent, but SPD,

system

 1 1− −=PM Ax PM b .

The preconditioner 1−PM is defined as

T T

σ

+

A B D F
I

B 0 F E
,

74

where σ is a scalar, and matrices D , F , and E match the dimensions of the

corresponding matrices A , B and the 0 block, respectively. This preconditioner

provides the framework for solving the system through a number of common forms (see

Reference [197] and the references therein for details). Note that an efficient

implementation would not require 1−PM A and 1−PM b to be explicitly formed. Instead,

an alternative implementation of the CG method is suggested, which, for suitable

choices M and P , will outperform the traditional algorithm [197].

Rozložník and Simoncini [193] use the simpler preconditioner

T

=

I B
M

B 0
.

By using the convenient form of the Cholesky-like factorisation of the preconditioner
1 1 1 T− − − −=M L D L , it is easy to solve the systems =Mv w using only matrix-vector

products. Note that the inverse has only blocks of I , B , TB , and 1()T −BB .

Preconditioning the augmented system with it allows the CG method to be utilised,

although scaling A is necessary in many cases to avoid non-convergence.

2.4.3.4 Analytic inverse
The analytic inverse of the KKT matrix is

1 1 1 1 1 1

1 1 1

T T− − − − − −

− − −

 −
 −

A A B S BA A B S
S BA S

. (2.7)

Note that using this form to solve with a given right-hand side is equivalent to using the

block TLDL and the block LU factorisation. The steps in solving with the

approximated block factorisation
1

ˆ
ˆ ˆ

T

−

=

−

I 0 A B
LU

BA I 0 S
 leads to an efficient way

to solve a system using the analytic inverse:

()

ˆ1. Solve
ˆ2. Solve
ˆ3. Solve T

=

= −

= −

Az p

Sy Bz q

Ax p B y

.

75

Note that this is nothing more than the procedure one goes through when solving the

Schur complement equation instead of the augmented equations. Compared with the

block-diagonal Schur preconditioner, this approach requires two more matrix-vector

products and two vector updates.

2.4.3.5 Augmented preconditioner
Golub and Greif [198] focus on an approach to make the augmented equations easier to

solve; the augmented Lagrangian approach. This system is the same as that used in the

augmented Lagrangian Uzawa method, where the second equation is multiplied by BW

and added to the first equation, where W is an n n× matrix (and n is the number of

columns in B). This gives

ˆ T T + +

=

x p BWqA B WB B
y qB 0

 (2.8)

Depending on the choice of W , (2.8) may be easier to solve, even when A is singular

or severely ill-conditioned. Furthermore, T+A B WB may even be positive-definite or

possess a small condition number (Golub and Greif 2003). Choosing γ=W I , where γ

is a scalar constant, requires a choice for γ . Based on experimental evidence, Golub

and Greif [198] found performance was dependent upon the choice of γ , and suggested

2/γ = A B based on empirical evidence as it may result in a significant difference in

the spectrum and condition number compared with the original (1,1) block.

The augmented block preconditioner of Rees and Grief [199], originally intended for

solving LPs and QPs with IPMs, is of the form

1T Tk− +

A B W B B
0 W

,

for positive-definite W and scalar k . This preconditioner has the benefit of becoming

increasingly effective as the optimization method approaches an optimal point. In order

to maintain a norm of the augmenting term that is comparable to the (1,1) block, Rees

and Greif [199] suggest that for quadratic programs the augmenting term is multiplied

by the norm of the (2,1) block squared over the norm of the (1,1) block. This

preconditioner unfortunately does not, in general, perform very well in the earlier steps

76

of the interior point method. Instead, a more effective preconditioner, such as a

constraint preconditioner, could be used until its effectiveness becomes beneficial (i.e.

the spectrum of the preconditioned matrix approaches two distinct values, for which an

optimal solution method such as MINRES will converge in just two iterations).The

extended preconditioner of Zeng and Li [200] is

 ()1 1T Tη ηε
ε

− + −

A B W B B
0 W

,

for scalars ε and η . They recommend setting =W I and 1ε η−= − to minimise the

number of distinct eigenvalues.

The challenge with these preconditioner forms is solving systems with the n n× ()1,1

block, which is often significantly larger in dimension and has more non-zeros than the

Schur complement.

2.4.3.6 Reduced augmented equations
This approach is specific to the augmented equations defining the search direction in the

IPM for conic optimisation, (1.35), and reverts to using the coefficient matrix of the

augmented equations with the generic unknown and right-hand side vectors, giving

2 T −

=

x pF A
y qA 0

,

except where noted otherwise.

In the IPM, as µ approaches zero, the eigenvalues of the (1,1) matrix in the augmented

equations (2F , where F is the Nesterov-Todd scaling matrix for SOCP and SDP) split

into three major groups. These groups are ()O µ , (1)O and (1 /)O µ . This means the

spectral condition number is 2(1 /)O µ , and explains the significant increase in inner

iterations required by iterative solvers to compute the search direction as the duality gap

is reduced.

To combat the growth in the condition number of the NT scaling matrix, Cai and Toh

[76] and Toh [134] form an eigendecomposition of the (1,1) block and address the ill-

conditioning directly for SOCP and SDP. The approach is also applicable to LPs [201].

77

As the interior point method process approaches an optimal solution, the linear systems

determining the search direction becoming increasingly ill-conditioned. This is of

concern for direct solution methods as the equations get closer and closer to a singular

system, which affects the solution accuracy and thus the optimality of the overall

solution. For iterative solution methods, the ill-conditioning adversely impacts the

convergence behaviour. Toh [134], Cai and Toh [76], and Chai and Toh [201] attempt

to solve the first issue through a reduced augmented equation approach that takes into

consideration the spectrum of the augmented equations in IPMs for SDP, SOCP, and

LP, respectively, thus allowing the search direction to be calculated more accurately.

This approach is similar to that of Freund et al.’s [125] for LP, in which the primal and

dual unknowns are reordered at each iteration, and then some are eliminated leading to a

reduced but more stable form of the augmented equations in order to ensure that none of

the values ()O µ in the diagonal ()1,1 block are inverted.

If at the kth iteration of the IPM, the residual vector resulting from the solution of the

Schur complement equation, (1.39), is ξ and the primal step is computed exactly, then

the primal infeasibility after the step is taken for some []0,1α ∈ is

() () ()1 1k k
p pα αξ+ = − +r r . This shows that the accuracy attained in solving the Schur

complement equation affects the primal feasibility. This leads directly to a deterioration

of the primal infeasibility as the optimal solution is approached in some problems, even

when direct solvers are used.

Using the eigenvalue decomposition of the NT scaling matrix, Cai and Toh [76] suggest

forming what they call the reduced augmented equations (RAE). By partitioning the

eigenvalues of 2F into a group of smaller eigenvalues, 1D , and a group of larger

eigenvalues, 2D , where the partition is stored in the permutation matrix P such that

()1 2diag , T=D D PΛP and partitioning the columns of the eigenvector matrix as

[]1 2
T =VP V V to match, one arrives at the partitioned augmented equations

1 1 1 1

2 2 2 2

1 2

T T T

T T T

 −
 − =

D 0 V A V x V p
0 D V A V x V p

AV AV 0 y q
,

78

where p and q are the appropriate right-hand side being solved for. It is the inversion

of the small entries (eigenvalues) in 1D that lead to the ill-conditioning in the Schur

complement, and so Cai and Toh [76] suggest using a positive definite diagonal matrix

1E , setting 1 1 1= +S D E , eliminating 2
T

xV d , then adding the first block row multiplied

by 1 2
1 1

−AV S to the third block row, and scaling the first block row by 1 2
1
−S , giving the

reduced augmented matrix

()

()

1 1 2
1 1 1 1

1 2 1 1
1 1 1 2diag ,

T

T T

− −

− − −

 −

D E AV S

AV S AV S D V A
.

They then show that, under a suitable partition of the eigenvalues, the reduced

augmented matrix has a condition number bounded independently of the normalised

complementarity gap, µ [76]. Similar to the augmented Lagrangian-style approaches,

the challenge of using this better conditioned system lies in solving a Schur-

complement-like system that has more non-zeros than the standard Schur complement,

along with both of the diagonal blocks being non-zero.

2.4.4 Matrix permutation and ordering
The use of ordering algorithms, traditionally utilised in direct solution schemes, have

achieved mixed results in the literature. Improvement in the convergence of ILU-

preconditioned Krylov projection methods can be achieved through the permutation of

the coefficient matrix, effectively renumbering the nodes [78]. Interestingly, the more

sophisticated orderings such as minimum degree fill (MD) and nested dissection (ND)

often have not performed as well as bandwidth-reducing orderings such as the reverse

Cuthill-McKee (RCM) [78] and that of Sloan [202], although as the accuracy of

incomplete factorisation approaches that of the direct factorisation, the more

sophisticated ordering will begin to provide benefit. A theoretical reason for the

improved performance of the RCM ordering for incomplete factorisations was provided

by Bridson and Tang [203], who showed that the inverse of the incomplete factorisation

under a RCM ordering is fully dense, while this is not necessarily true for the other

orderings considered. In contrast, MD and ND orderings have been found to improve

the quality of the approximate inverse preconditioners, and thus the rate of convergence

of the approximate inverse preconditioned Krylov projection methods [204].

79

Chapter 3 Performance of conventional
approaches on some FELA problems

3.1 Test problems
Test problems in both two and three dimensions to compare various approaches for

solving the linear systems that arise when computing the search direction at each step of

the interior point method are introduced here. The purpose of the problem test set is to

provide a realistic indication of how the method should perform when it is applied to

solve a broad spectrum of FELA problems in geotechnics. In two dimensions, a strip-

footing on frictional material and a tunnel heading in purely cohesive material are

considered. A square footing on purely cohesive material, a square excavation in

cohesive-frictional material, and a tunnel heading in purely cohesive material are

considered in three dimensions. A brief description of each of the test problems is

included below, with a diagram of the coarsest mesh used for each problem and a

summary detailing the pertinent characteristics of each of the associated optimisation

problems. Details of the hand calculated lower and upper bounds for the strip footing

are included as a comparison to the more general capability of FELA.

3.1.1 Two-dimensional problems

3.1.1.1 Strip footing
We consider a long strip footing of width 2B that rests on a semi-infinite domain of

frictional weightless material. For the simulations here, the Mohr-Coulomb soil is

assumed to have a cohesion of 1kPa and a friction angle of 20 , with bounds on the

solution which are within 0.5%. The problem is shown in Figure 7 and the mesh in

Figure 8. Note that the problem symmetry has been exploited.

Figure 7. Strip footing.

80

Figure 8. Two-dimensional footing mesh.

The bearing capacity of such a footing is often determined by hand calculation with

 22 2 2D C qQ BcN BqN B Nγγ= + + ,

where c is the soil cohesion, q is the surcharge per unit area on the soil surface, γ is

the unit weight of the soil, and cN , qN and Nγ are bearing capacity factors [35]. With

0qγ = = and 1B c= = , this problem results in calculation of the factor cN . A

comparison of the bounds computed for cN as φ varies is shown in Figure 9, along

with closed solutions due to Prandtl [228] and Terzaghi [35]. As can be seen, the FELA

bounds are very tight and in good agreement with the exact values.

Figure 9. The bearing capacity factor Nc as ϕ varies.

0

5

10

15

20

25

30

35

0 10 20 30 40 50

ϕ

Nc

Nc (Terzaghi)

Nc (smooth base)

LB

UB

81

The mesh used here is the coarsest of the three meshes considered. The Terzaghi [35]

value is given by

2

2
cot 1

2cos
4 2

c
aN θφ

π φ

= −
 +

 and
3 tan
4 2a e

φπ φ

θ

 −
 = .

For the perfectly frictionless base [228]

 tan 2cot e tan 1
4 2cN π φ π φφ = + −

.

Figure 10. Prandtl failure mechanism.

This value can be derived as an upper bound from the Hill and Prandtl failure

mechanisms [3]. The Prandtl failure mechanism is shown in Figure 10. The same value

may also be derived as a lower bound by considering an infinite number of

symmetrically inclined column stress states superposed (with a corresponding

horizontal stress to satisfy equilibrium) [3]. A three column version of a statically

admissible stress state is shown in Figure 11.

Figure 11. Three column lower bound stress state for strip footing.

82

3.1.1.2 Circular tunnel in cohesive material
The stability of a tunnel heading has received attention from a number of authors, with

solutions being obtained by computing lower bounds by hand [229], upper bounds via

rigid blocks [229]–[232], and both lower and upper bounds using FELA with varying

solution schemes and degrees of problem complexity [4], [230], [232], [233]. Figure 12

shows a cross-section of a circular tunnel, of infinite length, embedded in a semi-infinite

domain of Mohr-Coulomb material. The unit weight of the soil γ is assumed to be 0.5

kN/m3, the cohesion is 1.0 kPa, the friction angle is 0 , and the bounds computed to

within 1.5% of each other. Note that the actual values of c and γ are not critical, since

the bound solutions are presented in dimensionless form. The mesh used for the

problem is shown in Figure 13.

Figure 12. Plane strain tunnel problem.

3.1.2 Three-dimensional problems
The three-dimensional set of problems considered here is designed to provide a realistic

test of the performance of the limit analysis solvers for large-scale problems. The

connectivity of three-dimensional problems is significantly greater than that for two-

dimensional problems, and has been known to cause issues for many interior point

solvers. For the square footing and square excavation, both constant strain and linear

strain elements can be used in the formulation of the upper bound problem. The latter

formulations (post-fixed *UB2) do not require inter-element discontinuities to achieve

good quality bounds, and result in a smaller but more dense constraint matrix [234]. The

problems all use the Drucker-Prager yield criterion, with cohesion, friction angle, the

83

Lode angle (which is used to change the points at which the Drucker-Prager yield

surface matches the Mohr-Coulomb yield surface), and the unit weight of the soil.

Figure 13. Two-dimensional tunnel mesh.

3.1.2.1 Square excavation in cohesive-frictional material
The square excavation problem optimises the unit weight of the material to obtaining

the stability number /H cγ . While just one eighth of the problem could be used to

model the problem by exploiting symmetry, one quarter of the problem has been

modelled here to increase the three dimensional connectivity of the problem (as shown

in Figure 14). The mesh for this case is shown in Figure 15. There has been little

attention given to this problem in the literature, although there has been much work that

84

has focused on axisymmetric excavation problems [235], [236]. The parameters used in

the simulations were 1kPac = , 1φ = , 25θ = , and 1γ = .

Figure 14. Square excavation.

Figure 15. Three-dimensional square excavation mesh.

3.1.2.2 Square footing on weightless cohesive material
The square footing may be considered a special case of the rectangular footing with its

breadth B equal to its length L . The problem is similar to that of the strip footing in

two dimensions, so that the exact solution for the strip footing is also a lower bound for

the square footing [3]. The test problem used has a cohesion of 1kPa, φ = 0° , 25θ = ,

and is weightless. The problem is shown in Figure 16 and the mesh in Figure 17.

85

Figure 16. Square footing.

Bounds on the limit loads of rectangular and circular footings have been formulated by

Shield and Drucker [237] with an upper bound for a rectangular footing of

 5.24 0.47u
Bq c
L

 = +

for a weightless cohesive material. For a square footing B L= and an upper bound is

simply 5.71uq c= . Since the exact bearing capacity for a strip footing is

(2) 5.14uq c cπ= + ≈ , this serves as a rigorous lower bound for the square footing. This

can be compared with the best lower and upper bounds computed by FELA here of,

respectively, 5.63uq c= and 5.95uq c= (a gap of over 5%). Relative to two-

dimensional problems, it is much more difficult to achieve tight bounds on the solution

in three dimensions due to the rapid growth in computational burden as the mesh is

refined.

3.1.2.3 Tunnel heading in cohesive-frictional material
The three-dimensional tunnel heading problem has not received as much attention in the

numerical analysis literature as the two-dimensional case (see [238] and references

therein). This is due to the added complexity introduced by its three-dimensional nature

and the commensurate computational demands that are required to analyse its

behaviour. Moreover, the plane strain case considered above provides a conservative

estimate of the collapse load [4]. A longitudinal section through the problem considered

is shown in Figure 18 with the mesh in Figure 19. The soil parameters used in the

simulations were 1kPac = , 10φ = , 25θ = , and 0.5γ = . The tunnel heading has a

cover of 4H = , a diameter 2D = and a length of 6. This problem is demonstrably

harder to solve, and the gap between the bounds was greater than 30%.

86

Figure 17. Three-dimensional square footing mesh.

Figure 18. Section through the three-dimensional tunnel heading.

87

Figure 19. Three-dimensional tunnel heading mesh.

3.1.3 Problem summary
Table 1 and Table 2 present the two- and three-dimensional test problems used to

evaluate optimisation solver performance, respectively. The tables provide the

following information:

Problem – the name of the problem;

Velocity – the number of velocity nodes in the FELA mesh;

Stress – the number of stress nodes in the FELA mesh;

nF – the number of free variables in the optimisation problem formulation;

nSOC – the number of variables involved in a second-order conic constraint in the

optimisation problem formulation;

nk – the number of second-order conic inequalities in the optimisation problem

formulation;

m – the number of rows in the constraint matrix in the optimisation problem formulation

(and hence the number of constraints in the problem);

n – the number of columns in the constraint matrix in the optimisation problem

formulation (and hence the number of unknowns in the problem); and

88

nnz(A) – the number of non-zeros in the constraint matrix in the optimisation problem

formulation.

Table 1. Two-dimensional problem summary.

Problem Elements Velocity Stress nF nSOC nk m n nnz(A)
2DfootingLBS 232,330 232,330 174,510 280 523,530 174,510 465,360 523,810 2,960,442
2DfootingLBM 524,895 524,895 394,065 420 1,182,195 394,065 1,050,840 1,182,615 6,694,380
2DfootingLBL 935,060 935,060 701,820 560 2,105,460 701,820 1,871,520 2,106,020 11,922,120
2DfootingUBS 232,330 174,510 232,330 980 696,990 232,330 349,020 697,970 2,960,442
2DfootingUBM 524,895 394,065 524,895 1,470 1,574,685 524,895 788,130 1,576,155 6,694,380
2DfootingUBL 935,060 701,820 935,060 1,960 2,805,180 935,060 1,403,640 2,807,140 11,922,120
2DtunnelLBS 76,480 76,480 57,600 58,080 172,800 57,600 211,799 230,880 1,092,936
2DtunnelLBM 172,320 172,320 129,600 130,320 388,800 129,600 476,099 519,120 2,460,206
2DtunnelLBL 306,560 306,560 230,400 231,360 691,200 230,400 845,999 922,560 4,374,676
2DtunnelUBS 76,480 57,600 76,480 77,480 229,440 76,480 192,159 306,920 1,110,556
2DtunnelUBM 172,320 129,600 172,320 173,820 516,960 172,320 432,239 690,780 2,501,036
2DtunnelUBL 306,560 230,400 306,560 308,560 919,680 306,560 768,319 1,228,240 4,448,316

Table 2. Three-dimensional problem summary.

Problem Elements Velocity Stress nF nSOC nk m n nnz(A)
3DsqrexcLBS 41,472 41,472 24,576 43,008 147,456 24,576 164,355 190,464 964,142
3DsqrexcLBM 141,696 141,696 82,944 145,152 497,664 82,944 554,048 642,816 3,271,166
3DsqrexcLBL 265,632 265,632 155,136 271,488 930,816 155,136 1,034,703 1,202,304 6,123,526
3DsqrexcUBS 41,472 24,576 41,472 119,280 248,832 41,472 188,927 368,112 1,170,302
3DsqrexcUBM 141,696 82,944 141,696 399,708 850,176 141,696 639,359 1,249,884 3,982,174
3DsqrexcUBL 337,920 196,608 337,920 944,064 2,027,520 337,920 1,517,567 2,971,584 9,477,630
3DsqrexcUB2S 6,144 9,769 24,576 56,726 147,456 24,576 83,189 204,182 2,826,051
3DsqrexcUB2M 20,736 31,741 82,944 184,470 497,664 82,944 273,389 682,134 9,551,771
3DsqrexcUB2L 57,600 87,113 230,400 503,750 1,382,400 230,400 753,077 1,886,150 26,573,448
3DsqrfootLBS 43,956 43,956 25,920 26,244 155,520 25,920 153,648 181,764 932,326
3DsqrfootLBM 105,024 105,024 61,440 62,016 368,640 61,440 363,904 430,656 2,215,008
3DsqrfootLBL 357,264 357,264 207,360 208,656 1,244,160 207,360 1,227,168 1,452,816 7,493,136
3DsqrfootUBS 43,956 25,920 43,956 48,492 263,736 43,956 121,932 312,228 998,460
3DsqrfootUBM 105,024 61,440 105,024 113,088 630,144 105,024 289,728 743,232 2,377,408
3DsqrfootUBL 357,264 207,360 357,264 375,408 2,143,584 357,264 980,208 2,518,992 8,059,824
3DsqrfootUB2S 6,480 10,153 25,920 29,094 155,520 25,920 56,549 184,614 2,862,860
3DsqrfootUB2M 15,360 23,473 61,440 67,014 368,640 61,440 132,149 435,654 6,792,354
3DsqrfootUB2L 51,840 77,257 207,360 219,750 1,244,160 207,360 439,757 1,463,910 22,945,686
3DtunheadLBS 67,788 67,788 40,032 42,300 240,192 40,032 246,167 282,492 1,829,646
3DtunheadLBM 163,472 163,472 95,744 99,920 574,464 95,744 587,983 674,384 4,399,198
3DtunheadLBL 561,240 561,240 326,016 335,736 1,956,096 326,016 1,998,455 2,291,832 15,051,585
3DtunheadUBS 67,788 40,032 67,788 77,400 406,728 67,788 190,151 484,128 1,916,456
3DtunheadUBM 163,472 95,744 163,472 180,848 980,832 163,472 454,879 1,161,680 4,611,356
3DtunheadUBL 561,240 326,016 561,240 600,984 3,367,440 561,240 1,549,007 3,968,424 15,794,780

3.2 Compared solvers
The following software packages are all able to solve semidefinite-quadratic-linear

programs (SQLP), interface to MATLAB, and are widely available. In all cases, except

where noted otherwise, the default settings were used for the comparison. The relative

89

complementarity gap, and the primal and dual infeasibility tolerances, were by default

set to 810− . All the packages reported here implement infeasible primal-dual IPMs,

although there are significant variations in the methods beyond such a categorisation.

3.2.1 MOSEK
MOSEK [57] was designed to solve large-scale problems via a predictor-corrector interior

point method, and incorporates sophisticated pre-solve and parallel processing. It is also

based on the simplified homogeneous and self-dual (HSD) model with NT scaling. In

computing the search direction, MOSEK uses a left-looking supernodal Cholesky

factorisation and uses a graph-partition ordering for the results reported here. The latest

version can also solve SDPs as well as LPs, SOCPs, QPs, and general convex NLPs. It

also has mixed integer methods and simplex-based procedures, but these are of no use

for FELA. MOSEK is able to run in parallel, although it is not recommended for problems

that can be solved in under 60 seconds. As part of the presolve phase, MOSEK includes a

linear dependency checker to ensure the full row rank of the constraint matrix. For the

large problems considered in this Thesis, this will dominate both time and storage, and

so is not performed. Another part of the presolve phase, the eliminator, is used to check

whether it is possible and likely to be beneficial to remove any linear or free variables

before solving the problem with the IPM. Free variables are embedded in a second-

order cone.

3.2.2 Gurobi
Gurobi is another commercial optimisation package, and provides similar functionality

to MOSEK. For solving the FELA problems here, Gurobi has an IPM designed to solve

LPs and SOCPs. Few details of the solver implementation are readily available, other

than it being a primal-dual barrier-based method with a sophisticated presolve. The

default is the standard barrier method, with the option to use a HSD embedding to solve

the problem being recommended only if the problem appears to be infeasible or if

numerical difficulties are encountered. By default, Gurobi automatically chooses

between a nested dissection and AMD ordering.

3.2.3 SDPT3 4.0
SDPT3 (version 4.0) [70], [81] now contains both a three-term HSD (not the simplified

HSD) method (termed SDPT3HSD herein) and a primal-dual infeasible-interior point

90

predictor-corrector algorithm (termed SDPT3SQL herein). By default, it uses NT scaling

for second-order cone variables. There is no central path neighbourhood enforcement

used in the SQLP solver of SDPT3. The Schur complement is factorised using the

standard MATLAB [103] Cholesky decomposition, the left-looking supernodal CHOLMOD

[102], with an approximate minimum degree (AMD) ordering. It should be noted that

the ordering is not handled explicitly in SDPT3, relying on MATLAB to do so each time the

system is factorised. The decomposition is then used to precondition a symmetric quasi-

minimal residual iterative solver implementation [82]. Unfortunately, the supernodal

factors constructed by CHOLMOD are destroyed when the factors are returned in MATLAB,

so the supernodes are not able to be exploited in the Krylov solver preconditioning

operation. Free variables are addressed with the addition of slack variables and then

treating the free variables as the difference between the two linear variables.

3.2.4 SeDuMi 1.31
SeDuMi [58] implements a primal-dual interior point algorithm using a simplified HSD

embedding technique. The search direction at each iteration is obtained through a

supernodal-based TLDL factorisation with a multiple minimum degree ordering. If the

decomposition does not yield an answer with sufficient accuracy, the decomposition is

used as a preconditioner for the conjugate gradient (CG) method [80]. Free variables are

embedded in a second-order cone.

3.2.5 Mix8
Mix8 is a standalone FELA package developed at the University of Newcastle. The IPM

is based on a simplified HSD scheme and uses NT scaling with Mehrotra’s predictor

corrector method for the search direction based on the extension to SOCP described by

Andersen et al. [57]. HSL MA57 [79] is used to build a TLDL decomposition of the

Schur complement equation with the multifrontal method using the HSL MC50

implementation of AMD for the ordering. Different step lengths in the primal and dual

variables are not allowed. Free variables are embedded in a second-order cone of

dimension 2 for numerical stability.

91

3.3 Comparison results
The solvers described in the previous section were used to solve the set of test problems

presented in Section 3.1. The simulations were all run using a single thread on an Apple

MacBook Pro with an Intel Core i7-3740QM 2.70GHz CPU with 16.0GB RAM

running Windows 7 (64 bit) and MATLAB R2012b. Mix8 was compiled using the Intel

Fortran Composer XE 2013, with the Intel MKL BLAS routines used where suitable.

The results are discussed below.

For each analysis, a range of values were recorded in order to compare the performance

of the various solver packages. For each problem, the following values were recorded:

nit – the number of IPM iterations;

tT – the total time taken to solve the problem in seconds;

tP – the time spent in the presolve phase in seconds (‘-’ denotes that the solver does not

use a presolve phase);

tO – the time taken for the ordering method in seconds (as noted above, SDPT3 does not

explicitly use an ordering, but relies on MATLAB’s internal chol function to perform the

ordering before factorising the matrix, and, for Mix8, the analysis phase for MA57 which

incorporates the MC50 ordering is displayed);

pobj – the final primal objective value reported by the solver;

pfeas – the final primal infeasibility reported by the solver;

dfeas – the final dual infeasibility reported by the solver;

gap – the final normalised complementarity gap reported by the solver;

m – the number of rows in the constraint matrix A as reported by the solver after any

presolving is completed (and hence the number of constraints in the problem);

n – the number of columns in the constraint matrix A as reported by the solver after

any presolving is completed (and hence the number of variables in the problem);

nnz(A) – the number of non-zeros in the constraint matrix A as reported by the solver

after any presolving or free variable conversion is completed; and

92

nnz(L) – the number of non-zero values in the factorisation determining the search

direction at each iteration of the IPM. The number of non-zeros in SDPT3’s

factorisations vary from iteration to iteration, probably due to the use of random

numbers within the AMD ordering performed before each factorisation. Thus, nnz(L)

reported here for the SDPT3 solvers is the maximum number of non-zeros present in the

factors over the duration of the IPM, although the differences are usually negligible.

3.3.1 Smaller problems
The coarsest mesh problems (those problems in Table 1 and Table 2 with an ‘S’ at the

end of the problem name) were analysed using all of the solvers described in the

previous section. These “smaller” problems are not small by modern standards with

roughly 100,000 to 500,000 variables, but do not prove to be a serious computational

burden for the better solvers with solution times generally less than 90 seconds. A

column chart of the total runtime for the problems in the small test set is shown in

Figure 20 and a summary of the results for the coarse mesh problems is provided in

Table 3. See above for a description of the values displayed.

Figure 20. Comparison of the total solution time of the small problem set between all
available solvers.Note that two of the SeDuMi values have been cut off (the values are

available in Table 3) and simulations that did not successfully converge have been
removed from the chart.

Considering Figure 20, it is obvious that there is a large difference between the runtime

performance of the solvers considered and that the four two-dimensional problems take,

in general, less time to solve than the eight three-dimensional problems. As can be seen

0
100
200
300
400
500
600
700

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

gurobi

mix8

mosek

sdpt3hsd

sdpt3sql

sedumi

93

in the figure and Table 3, SeDuMi exhibits rather unpredictable behaviour compared to

its open-source rivals SDPT3. SeDuMi was over twice as fast as the HSD variant on the

quadratic formulation of the upper bound for the square footing and the upper bound of

the two-dimensional tunnel problem, but taking twice as long on, for example, the

quadratic formulation of the square excavation upper bound. More concerning is

SeDuMi’s difficulty in achieving primal feasibility, and thus convergence, in all of the

lower bound problems except the square footing. SeDuMi also fails to converge on the

upper bounds for the square footing and the tunnel heading and was the only solver that

had severe numerical difficulties on more than one of the problems. In comparison to

the better solvers, SeDuMi close to an order of magnitude slower than MOSEK for the

majority of the coarse mesh problems. Note that while SeDuMi embeds all of the free

variables into a single second order cone by default, splitting the free variables (that is,

using a slack variable to convert the free variable into the difference of two linear

variables) does not provide any net performance gain. Because of the poor performance

exhibited on these smaller problems, SeDuMi was not used to analyse the larger

problems in the test set.

SDPT3SQL was, on average, over 50% faster than its HSD counterpart, SDPT3HSD and

was slower only on the upper bound for the tunnel heading, which is the only problem

where the HSD formulation completed in fewer iterations. While this is partially due to

the increased work required to solve the HSD formulation at each IPM iteration as

compared with the standard approach apparent both theoretically and in the time per

iteration, such a discrepancy between the methods is an unexpected observation.

Interestingly, SDPT3SQL was the only solver to achieve full convergence on

3DtunheadLBS, with Mix8 failing totally, SeDuMi stopping prematurely, and the two

commercial solvers along with SDPT3HSD failing to achieve primal feasibility, although

SDPT3HSD did make more progress than MOSEK and Gurobi. In general, though, the

MATLAB-based solvers were slower than the standalone and commercial solvers.

Of these standalone solvers, it is clear that MOSEK exhibits a comparatively higher level

of performance in terms of total runtime, beating the other commercial solver, Gurobi,

by a factor of two or more in most of the problems. It was also the most consistent,

solving each of the problems to the required accuracy in less than 26 iterations. It

94

should be noted, however, that MOSEK converged to a slightly different solution

compared with all of the other solvers for problems 2DtunnelLBS and 2DtunnelUBS.

This discrepancy could be a result of rounding errors as a result of scaling the

coefficient matrix, but most likely it is caused by the significant elimination of

constraints and variables in the presolve phase, and the removal of constraints identified

as redundant. For both of these problems (as well as 2DfootingLBS and some of the

three-dimensional problems), MOSEK eliminates more constraints than there are free

variables, indicating that the presolver has removed constraints considered redundant

(and that the constraint matrix is thus not considered to be full rank). MOSEK’s

documentation suggests reducing the tolerances used to identify redundant constraints if

such a problem is expected, and that if this improves the situation then the problem is

poorly formulated [75]. It is also noteworthy that MOSEK eliminates some of the

conically-constrained variables in 2DfootingLBS and 3DtunheadLBS. Regardless of the

cause, such behaviour is unexpected and strongly suggests that one should check the

validity of their solutions, even they are reported by well-regarded software as

“optimal” and “feasible”.

Unsurprisingly, the commercial solvers, MOSEK and Gurobi, were generally better in

terms of runtime and robustness, although Gurobi did exhibit some unexpectedly high

IPM iteration counts for some of the problems, with the worst being 2DfootingLBS with

126 iterations (where it was also the slowest solver tested). It also struggled to achieve

sufficient primal feasibility on the two-dimensional lower bound problems and

3DtunheadLBS. The better performance across the board is likely due to three main

factors, the presolve phase removing many or all of the free variables from the problem

formulation, the nested dissection ordering, and the purpose-built Cholesky factorisation

routines used to obtain the search direction.

Mix8 performs well on the two-dimensional problems, but is slower when solving those

in three dimensions, and even failing on the lower bound tunnel heading

(2DtunheadLBS), with MA57 reporting that the Schur complement matrix is singular in

the first IPM iteration. There are obviously worthwhile gains possible for the *UB2

problems where Mix8 exhibits slow convergence. It should be noted that the MA57

documentation [79] does recommend using the graph partition-based nested dissection

95

ordering in METIS for large-scale matrices, but, for this subset of the problems, there is a

negligible to small improvement over the MC50 AMD ordering.

Another important difference between the two commercial solvers and the others is the

eliminations performed during the presolve phase. In some of the problems, all of the

free variables are eliminated from the problem before the problem is solved. In some

cases, this leads to a significant reduction in the size of the problem (reducing both

constraints and unknowns), as well as reducing the number of non-zero entries in the

constraint matrix. The reduction in the number of constraints is most pronounced in the

linear strain element-based upper bound formulations (*UB2 problems). This may be

the basis of the difficulty encountered by the Mix8 solver on these problems.

3.3.2 Finer mesh problems
The slightly larger problems (identified by the ‘M’ at the end of the problem name)

were simulated using all of the solvers except SeDuMi, which was deemed to be too

slow on the small-scale problems to warrant its use on larger problems. The results of

these analyses are shown in Figure 21 and Table 4. For a description of the table values,

see Section 3.3 above.

The difference between the two- and three-dimensional problems is more pronounced in

Figure 21 than the corresponding chart for the small problem set yet is similar to that of

the smaller problems, generally sitting within an order of magnitude within one another.

Again, the cases in which some solvers were unable to compute acceptable solutions

included MOSEK on the two-dimensional tunnel problems, where it reports an optimal

solution that is over 20% and 13% different to the respective lower and upper bound

solutions reported by all the remaining solvers. Mix8 failed on the first iteration for

3DtunheadLBM, reporting a singular coefficient matrix. SDPT3SQL had numerical

difficulties on a few of the problems, having to stop because the Schur complement was

either singular or indefinite to machine precision. Even so, SDPT3SQL was only unable

to solve one of those problems, 3DsqrexcUB2M, to sufficient accuracy.

96

Table 3. Available solver performance on the small size problems.
Problem Solver nit tT tP tO pobj pfeas dfeas gap m n nnz(A) nnz(L)

2DfootingLBS

sedumi 8 235.7 - 85.7 -14.629 1E-5 7E-7 6E-12 465,360 523,812 2.96E+6 2.14E+7
sdpt3sql 35 133.1 - - -14.834 9E-10 3E-8 4E-5 465,360 524,090 2.96E+6 2.29E+7
sdpt3hsd 40 185.5 - - -14.834 5E-8 2E-6 7E-5 465,360 524,090 3.14E+6 2.48E+7
gurobi 126 332.6 2.0 2.1 -14.834 3E-4 6E-9 8E-10 464,800 523,250 2.96E+6 1.98E+7
mosek 25 41.2 0.3 8.2 -14.831 6E-9 6E-9 6E-9 464,940 523,391 2.79E+6 1.82E+7
mix8 29 54.0 - 0.2 -14.832 2E-8 2E-8 2E-8 465,360 524,090 2.79E+6 2.75E+7

2DfootingUBS

sedumi 22 145.3 - 56.9 -14.916 1E-9 3E-9 1E-14 349,020 697,972 2.96E+6 1.97E+7
sdpt3sql 51 160.8 - - -14.917 2E-10 3E-11 8E-9 349,020 698,950 2.96E+6 1.93E+7
sdpt3hsd 56 200.3 - - -14.917 2E-8 1E-11 2E-9 349,020 698,950 3.20E+6 1.84E+7
gurobi 32 44.7 2.3 1.5 -14.917 8E-11 9E-14 2E-11 348,320 697,270 2.96E+6 1.53E+7
mosek 20 26.4 0.5 5.1 -14.914 5E-10 7E-9 3E-9 348,040 696,990 1.91E+6 1.41E+7
mix8 22 28.2 - 0.1 -14.916 8E-9 7E-9 7E-9 349,020 698,950 1.92E+6 1.88E+7

2DtunnelLBS

sedumi 25 155.7 - 15.8 -0.787 8E-5 4E-7 8E-11 211,799 230,882 1.09E+6 6.38E+6
sdpt3sql 68 94.3 - - -0.791 3E-10 2E-9 7E-7 211,799 288,960 1.44E+6 6.45E+6
sdpt3hsd 76 125.9 - - -0.791 5E-7 3E-8 9E-6 211,799 288,960 1.73E+6 7.13E+6
gurobi 59 53.9 1.0 1.0 -0.791 3E-5 3E-10 1E-10 210,819 229,900 1.09E+6 6.23E+6
mosek 19 14.5 0.9 3.3 -0.767 5E-8 3E-8 3E-8 106,462 182,924 1.61E+6 6.32E+6
mix8 43 23.2 - 0.1 -0.790 6E-9 8E-9 8E-9 211,799 288,960 1.32E+6 7.84E+6

2DtunnelUBS

sedumi 31 52.4 - 14.0 -0.824 1E-7 2E-9 2E-13 192,159 306,922 1.11E+6 5.85E+6
sdpt3sql 48 52.0 - - -0.824 1E-12 2E-11 8E-9 192,159 384,400 1.46E+6 4.49E+6
sdpt3hsd 79 109.5 - - -0.824 6E-9 3E-11 7E-9 192,159 384,400 1.84E+6 5.47E+6
gurobi 45 30.9 1.4 0.9 -0.824 3E-11 8E-14 4E-12 191,069 305,830 1.10E+6 5.46E+6
mosek 17 9.5 1.0 1.2 -0.796 4E-8 3E-8 3E-8 51,916 243,158 7.69E+5 3.89E+6
mix8 26 13.6 - 0.1 -0.824 5E-9 6E-9 6E-9 192,159 384,400 1.06E+6 6.25E+6

3DsqrexcLBS

sedumi 18 689.8 - 13.5 -121.988 4E-5 5E-7 1E-10 164,355 190,466 9.64E+5 3.43E+7
sdpt3sql 26 127.5 - - -121.989 3E-11 7E-8 3E-7 164,355 233,472 1.22E+6 3.29E+7
sdpt3hsd 57 323.3 - - -121.989 7E-7 9E-13 5E-13 164,355 233,472 1.42E+6 3.44E+7
gurobi 20 53.2 2.0 3.9 -121.988 6E-8 4E-10 2E-10 145,924 172,033 9.27E+5 2.17E+7
mosek 17 29.3 0.2 2.6 -121.987 1E-8 3E-8 3E-8 121,348 147,458 1.41E+6 2.08E+7
mix8 19 121.1 - 0.1 -121.988 7E-10 7E-9 7E-9 164,355 233,472 1.74E+6 3.60E+7

3DsqrexcUBS

sedumi 6 152.3 - 13.9 -31.145 1E+1 3E-2 2E-5 188,927 368,114 1.17E+6 2.77E+7
sdpt3sql 43 171.8 - - -155.150 5E-10 3E-9 9E-9 188,927 487,392 1.59E+6 3.44E+7
sdpt3hsd 69 360.2 - - -155.150 2E-6 4E-13 6E-13 188,927 487,392 2.10E+6 3.31E+7
gurobi 52 149.3 42.2 2.9 -155.150 9E-8 4E-10 9E-10 112,752 291,937 9.99E+5 1.75E+7
mosek 19 25.5 0.3 1.3 -155.147 3E-8 4E-8 4E-8 69,648 248,834 7.89E+5 1.50E+7
mix8 23 89.9 - 0.1 -155.149 1E-9 9E-9 9E-9 188,927 487,392 1.32E+6 3.04E+7

3DsqrexcUB2S

sedumi 30 380.8 - 4.8 -138.248 4E-7 2E-9 6E-13 83,189 204,184 2.83E+6 1.83E+7
sdpt3sql 63 188.8 - - -137.365 6E-12 2E-3 1E-2 83,189 260,908 3.50E+6 1.76E+7
sdpt3hsd 93 347.7 - - -138.248 1E-7 8E-11 4E-9 83,189 260,908 3.76E+6 1.85E+7
gurobi 30 34.3 1.6 1.2 -138.248 9E-11 9E-12 3E-10 52,010 173,003 2.62E+6 8.10E+6
mosek 26 19.1 0.6 1.3 -138.246 2E-7 2E-8 2E-8 31,227 152,221 1.15E+6 6.92E+6
mix8 49 525.3 - 0.3 -138.242 2E-9 9E-9 9E-9 83,189 260,908 1.99E+6 3.83E+7

3DsqrfootLBS

sedumi 21 6539.8 - 8.7 -5.492 1E-6 4E-9 2E-12 153,648 181,766 9.32E+5 3.43E+7
sdpt3sql 33 159.5 - - -5.492 5E-12 1E-10 7E-9 153,648 208,008 1.13E+6 3.30E+7
sdpt3hsd 59 322.3 - - -5.492 7E-9 4E-11 1E-9 153,648 208,008 1.26E+6 3.33E+7
gurobi 40 94.5 1.1 5.3 -5.492 2E-10 6E-11 4E-11 153,252 181,440 9.31E+5 2.59E+7
mosek 21 78.2 0.8 4.6 -5.492 9E-9 2E-8 2E-8 109,786 163,895 2.12E+6 3.28E+7
mix8 23 152.0 - 0.1 -5.492 5E-10 5E-9 5E-9 153,648 208,008 1.79E+6 3.55E+7

3DsqrfootUBS

sedumi 14 418.4 - 6.1 -6.484 2E-1 2E-6 8E-10 121,932 312,230 9.98E+5 3.14E+7
sdpt3sql 34 135.1 - - -6.234 2E-13 1E-10 1E-8 121,932 360,720 1.21E+6 3.25E+7
sdpt3hsd 51 244.5 - - -6.234 9E-9 2E-10 3E-9 121,932 360,720 1.45E+6 3.01E+7
gurobi 23 55.1 1.0 5.0 -6.234 9E-10 5E-10 2E-11 119,340 309,636 9.75E+5 2.21E+7
mosek 18 29.1 0.7 2.3 -6.234 9E-9 2E-8 2E-8 36,430 270,023 1.03E+6 1.53E+7
mix8 25 124.5 - 0.1 -6.234 3E-10 3E-9 3E-9 121,932 360,720 1.19E+6 3.08E+7

3DsqrfootUB2S

sedumi 21 98.6 - 3.1 -6.170 5E-7 2E-9 9E-13 56,549 184,616 2.86E+6 1.07E+7
sdpt3sql 44 97.7 - - -6.170 3E-13 1E-10 6E-9 56,549 213,708 3.48E+6 1.16E+7
sdpt3hsd 76 195.2 - - -6.170 6E-9 8E-11 6E-9 56,549 213,708 3.62E+6 1.17E+7
gurobi 40 50.5 1.6 1.3 -6.170 1E-9 1E-11 3E-11 54,605 182,645 2.73E+6 1.14E+7
mosek 19 15.0 0.5 1.1 -6.169 1E-8 3E-8 3E-8 27,882 181,843 1.06E+6 7.92E+6
mix8 32 56.9 - 0.1 -6.170 3E-9 4E-9 4E-9 56,549 213,708 2.00E+6 1.16E+7

3DtunheadLBS

sedumi 10 546.6 - 21.5 -18.848 4E-2 5E-4 6E-8 246,167 282,494 1.83E+6 5.13E+7
sdpt3sql 60 467.6 - - -22.395 2E-8 2E-9 5E-8 246,167 324,792 2.26E+6 5.37E+7
sdpt3hsd 76 656.5 - - -22.395 1E-6 6E-11 3E-10 246,167 324,792 2.46E+6 5.34E+7
gurobi 47 210.0 1.9 8.0 -22.395 9E-5 9E-7 2E-10 243,708 280,225 1.82E+6 3.87E+7
mosek 24 88.3 0.5 4.9 -22.394 2E-5 7E-8 6E-7 203,063 239,581 2.39E+6 3.75E+7
mix8 0 11.1 - 0.2 0.000 3E-1 1E+0 1E+0 246,167 324,792 2.91E+6 5.55E+7

3DtunheadUBS

sedumi 24 800.6 - 14.2 -33.423 3E-2 1E-7 2E-11 190,151 484,130 1.92E+6 4.44E+7
sdpt3sql 73 430.4 - - -33.432 8E-9 4E-10 1E-8 190,151 561,528 2.39E+6 4.91E+7
sdpt3hsd 43 317.9 - - -33.432 7E-6 6E-6 1E-4 190,151 561,528 2.76E+6 4.96E+7
gurobi 29 139.2 1.6 5.9 -33.432 6E-6 2E-9 7E-11 184,860 478,837 1.87E+6 3.04E+7
mosek 20 46.1 0.4 2.0 -33.430 4E-8 4E-8 4E-8 112,752 406,730 1.21E+6 2.62E+7
mix8 44 251.1 - 0.1 -33.432 7E-9 5E-11 5E-11 190,151 561,528 1.85E+6 4.18E+7

97

Figure 21. Comparison of the total solution time of the medium problem set between
some of the available solvers. Note that one of the Mix8 values has been cut off (the

value is available in Table 4) and simulations that did not successfully converge have
been removed from the chart.

The two simplified HSD formulations, MOSEK and Mix8, generally had the lowest

iteration counts of approximately 15 to 25 iterations. Notable exceptions were the

2DtunnelLBM and 3DsqrexcUB2M, where the Mix8 solver was slower to converge and

even stopped due to a maximum number of iterations for the latter problem.

Unfortunately, the *UB2 problems still proved difficult for all of the non-commercial

solvers yet, in addition to the improved upper bounds computed, were solved

significantly faster than their counterpart *UB problems by the commercial solvers. For

example, on the square footing problem, MOSEK solved the quadratic formulation three

times faster than 3DsqrfootUB with a bound improvement of 1%. Similar to the small

problems, Gurobi spent a large number of iterations on some of the problems and had a

blow-out in the presolve time on 3DsqrexcUBM. In general, though, it reliably attained

a suitably accurate and feasible solution.

MOSEK was the fastest solver on every problem except 3DsqrfootLBM, where Gurobi

was less than a quarter of a percent faster. Furthermore, MOSEK was the fastest solver per

iteration except on 3DsqrfootLBM (taking the presolve and ordering time into account

makes negligible difference) and also the lowest iteration count on every problem but

3DsqrexcUB2M. The per iteration time difference may be correlates with the dimension

of the system to be factorised and the amount of fill-in in the factor with MOSEK

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

gurobi

mix8

mosek

sdpt3hsd

sdpt3sql

98

eliminating more equations and variables from the original problem formulation in

every problem but 2DfootingLBM, where Gurobi has a slight lead over MOSEK. MOSEK

also has fewer non-zeros in the factorisation in every problem except 3DsqrfootLBM

where it is slower than Gurobi on a per iteration basis but as Gurobi takes 31 iterations

to convergence versus MOSEK’s 21, MOSEK takes less than a second longer to solve the

problem than Gurobi’s 374.4s. This shows that performance improvements are possible

in the details of the IPM algorithm as well as in the linear solver.

The largest problems (with a ‘L’ at the end of the problem name) were only solved

using the two commercial solvers, MOSEK and Gurobi, with the remaining solvers

requiring too much time and/or memory to solve these problems. Both of these solvers

presolve the problem and use a nested dissection ordering with a supernodal Cholesky

solver, a clear sign of the suitability of the combination. Note that all bar one of these

problems has over a million unknowns in the original optimisation problem formulation

(the exception being the 2DtunnelLBL, still with over 900,000 variables), with the

largest having almost four million variables. The number of constraints in these

problems ranges from 750,000 to 2,000,000, indicating that these are truly large-scale

problems. The results of these analyses are shown in Table 5 (the description of the

table values is provided in Section 3.3 above).

Figure 22. Comparison of the total solution time of the large problem set between the
two commercial solvers. Note that simulations that did not successfully converge have

been removed from the chart

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

gurobi

mosek

99

For the two-dimensional tunnel problems 2DtunnelLBL and 2DtunnelUBL, MOSEK’s

results are even further from the optimal value than on the coarser meshes, with both

solutions more than 40% off the Gurobi results. What is most striking about these

results is the extreme growth in the time required to solve some of the problems over

their coarser mesh counterparts. The solution times ranged from just under 10 minutes

to over two hours for the three-dimensional problems, while MOSEK solved the two-

dimensional problems in approximately three minutes or less. The algorithmic details of

the IPM implementation evidently have an impact, as seen in the better performance of

MOSEK over Gurobi on these larger problems in the number of IPM iterations spent

converging to a solution with Gurobi taking two to 9 times more iterations than MOSEK

except on 3DsqrexcUB2L, where Gurobi converges in 24 iterations against MOSEK’s 20.

Between these two solvers, it is the capability of the IPM algorithm to converge within

a small number of iterations that drives the total performance of the solver, but the

ability to efficiently obtain the search direction as the problems become larger that is the

primary factor in whether or not a given problem is able to be solved. MOSEK is again

faster than Gurobi on a per iteration basis on every problem except 3DsqrfootLBL.

The relative performance of Gurobi and MOSEK on the large problems in the test set

supports the notion that any performance enhancement effort should target the approach

used to obtain the search direction at each iteration of the IPM in order to ensure

progress can be made efficiently towards a solution. In addition, the algorithm used by

the MOSEK solver generally dominates that used in Gurobi with a consistent and low

iteration count on all the problems in the test set, which drives the total performance of

the solver.

3.3.3 Comparison summary
Over the set of small, medium, and large problems, a few important patterns emerge

concerning the effort necessary to solve the problems as they grow in size. The average

number of IPM iterations remains constant as the problems grow in size, with an

average of 35 to 40 iterations per problem for the results provided. A minimum of 15 to

a maximum of 150 iterations are needed to obtain solutions of sufficient accuracy. The

time and storage required to solve the three-dimensional problems, however, shows a

different behaviour as they grow in size, despite the fact that the number of entries in

100

the constraint matrix is constant at approximately 5 to 15 per row (with roughly the

same number of non-zeros per column).

While the use of the nested dissection ordering in Gurobi and MOSEK appears superior to

the AMD orderings used in the other solvers, this difference plays a secondary role to

the problem dimensionality. The ratio of the number of non-zeros in the factorisation to

the number of non-zeros in the constraint matrix, as a function of the number of

unknowns in the problem, is much higher for the three-dimensional problems than for

the two-dimensional problems. This is due to the greater connectivity in the three-

dimensional mesh, resulting in a higher level of fill-in.

Interestingly, in the linear strain element-based upper bound method the storage growth

observed is not as severe as the formulations with inter-element discontinuities, since

the factorisations in the UB2 problems have a fill-in ratio that is roughly comparable

with that in two dimensions. A summary of the ratio of the non-zeros in the

factorisation to the non-zeros in the constraint matrix as reported by MOSEK is shown in

Table 6. Even though the different formulation can lead to a significant improvement in

terms of tightness of the limit load computed and a reduction in runtime, there is still a

distinct difference in the runtime behaviour between the three-dimensional and two-

dimensional problems. This is seen clearly in Figure 23, which shows the time per

iteration as a function of the number of unknowns in the problem as solved (after

presolving and variable conversion has taken place) for MOSEK on all of the problems in

the test set.

The runtime for the two-dimensional problems, at this scale, appears almost linear,

while the three-dimensional problems display a distinctly nonlinear growth. This

behaviour is evident across all the solvers considered, regardless of whether time per

iteration or total run time is considered (because of the relatively constant number of

IPM iterations as the problem size grows), or whether the number of constraints or the

number of unknowns is used as a measure of the size of the problem. It is hoped that,

through a suitable use of parallelisation and some combination of efficient iterative and

direct methods, the growth in solution time for the three-dimensional problems can be

contained to behave more like the two-dimensional problem solution time.

101

Table 4. Available solver performance on the medium size problems.
Problem Solver nit tT tP tO pobj pfeas dfeas gap m n nnz(A) nnz(L)

2DfootingLBM

sdpt3sql 48 504.2 - - -14.834 2E-9 2E-9 2E-6 1,050,840 1,183,035 6.69E+6 6.67E+7
sdpt3hsd 46 520.1 - - -14.834 1E-7 7E-8 1E-5 1,050,840 1,183,035 7.09E+6 6.50E+7
gurobi 115 766.4 4.6 5.3 -14.834 4E-5 5E-7 1E-9 1,050,000 1,181,775 6.69E+6 5.00E+7
mosek 20 90.0 0.7 20.5 -14.825 8E-9 8E-9 8E-9 1,050,210 1,181,986 6.32E+6 4.58E+7
mix8 24 127.3 - 0.4 -14.832 1E-8 2E-8 2E-8 1,050,840 1,183,035 6.30E+6 6.86E+7

2DfootingUBM

sdpt3sql 55 393.4 - - -14.891 3E-10 2E-11 9E-9 788,130 1,577,625 6.70E+6 4.45E+7
sdpt3hsd 63 570.0 - - -14.891 3E-8 1E-11 2E-9 788,130 1,577,625 7.23E+6 4.84E+7
gurobi 37 134.8 4.9 3.6 -14.891 2E-11 9E-14 8E-12 787,080 1,575,105 6.69E+6 3.76E+7
mosek 20 62.3 1.1 12.4 -14.886 5E-10 5E-9 2E-9 786,660 1,574,685 4.32E+6 3.41E+7
mix8 23 86.2 - 0.3 -14.885 9E-9 8E-9 8E-9 788,130 1,577,625 4.33E+6 5.13E+7

2DtunnelLBM

sdpt3sql 87 310.0 - - -0.798 3E-10 1E-10 7E-8 476,099 649,440 3.24E+6 1.77E+7
sdpt3hsd 60 237.7 - - -0.798 6E-6 6E-7 2E-4 476,099 649,440 3.89E+6 1.82E+7
gurobi 56 123.8 2.0 2.3 -0.798 5E-5 2E-11 4E-10 474,629 517,650 2.46E+6 1.56E+7
mosek 16 33.3 2.0 7.3 -0.649 4E-8 4E-8 4E-8 267,653 439,945 3.18E+6 1.55E+7
mix8 44 60.5 - 0.2 -0.798 5E-9 7E-9 7E-9 476,099 649,440 2.98E+6 1.90E+7

2DtunnelUBM

sdpt3sql 60 160.0 - - -0.816 4E-12 1E-11 7E-9 432,239 864,600 3.28E+6 1.16E+7
sdpt3hsd 56 191.5 - - -0.816 9E-8 5E-6 6E-4 432,239 864,600 4.15E+6 1.38E+7
gurobi 47 80.3 2.9 2.1 -0.816 4E-10 6E-13 2E-12 430,604 689,145 2.49E+6 1.39E+7
mosek 15 22.5 2.6 3.4 -0.718 2E-8 2E-8 2E-8 144,197 575,059 1.73E+6 1.02E+7
mix8 25 33.4 - 0.2 -0.816 6E-9 7E-9 7E-9 432,239 864,600 2.38E+6 1.58E+7

3DsqrexcLBM

sdpt3sql 30 2935.3 - - -125.524 7E-11 8E-8 5E-7 554,048 787,968 4.14E+6 2.39E+8
sdpt3hsd 63 3917.7 - - -125.524 4E-6 6E-13 7E-13 554,048 787,968 4.80E+6 2.29E+8
gurobi 35 633.0 24.2 19.6 -125.524 4E-7 2E-9 2E-10 491,841 580,609 3.15E+6 1.15E+8
mosek 16 245.8 0.5 11.1 -125.520 1E-8 3E-8 3E-8 408,897 497,666 4.77E+6 1.14E+8
mix8 21 1817.6 - 0.6 -125.524 3E-9 7E-9 7E-9 554,048 787,968 5.91E+6 2.29E+8

3DsqrexcUBM

sdpt3sql 44 1174.6 - - -148.410 2E-9 2E-8 1E-7 639,359 1,649,592 5.39E+6 2.26E+8
sdpt3hsd 65 2522.9 - - -148.410 1E-5 5E-11 1E-10 639,359 1,649,592 7.13E+6 2.32E+8
gurobi 37 1391.6 803.1 14.5 -148.410 8E-7 5E-9 2E-10 385,020 995,545 3.43E+6 9.79E+7
mosek 18 197.8 0.9 4.8 -148.403 2E-8 3E-8 3E-8 239,652 850,178 2.74E+6 8.50E+7
mix8 23 1242.8 - 0.5 -148.410 3E-9 5E-9 5E-9 639,359 1,649,592 4.49E+6 1.89E+8

3DsqrexcUB2
M

sdpt3sql 100 2088.3 - - -134.865 9E-11 1E-3 2E-2 273,389 866,604 1.18E+7 1.14E+8
sdpt3hsd 100 2146.6 - - -135.588 2E-7 2E-10 2E-8 273,389 866,604 1.27E+7 1.06E+8
gurobi 19 151.7 4.7 6.7 -135.588 3E-6 7E-12 3E-10 174,134 582,879 9.05E+6 4.63E+7
mosek 23 110.4 2.2 5.4 -135.584 1E-7 2E-8 2E-8 104,910 513,656 4.01E+6 3.74E+7
mix8 60 15941.1 - 1.4 -135.578 6E-9 1E-8 1E-8 273,389 866,604 6.63E+6 3.45E+8

3DsqrfootLBM

sdpt3sql 36 804.5 - - -5.557 8E-11 1E-10 1E-8 363,904 492,672 2.68E+6 1.30E+8
sdpt3hsd 77 1854.7 - - -5.557 1E-8 5E-14 2E-12 363,904 492,672 2.99E+6 1.31E+8
gurobi 31 374.4 2.7 15.1 -5.557 1E-9 2E-10 7E-12 363,200 430,080 2.21E+6 8.73E+7
mosek 21 375.3 1.9 12.9 -5.557 1E-8 3E-8 3E-8 261,560 389,881 5.02E+6 1.08E+8
mix8 26 956.2 - 0.3 -5.557 5E-10 5E-9 5E-9 363,904 492,672 4.25E+6 1.24E+8

3DsqrfootUB
M

sdpt3sql 37 741.8 - - -6.112 2E-14 7E-11 8E-9 289,728 856,320 2.88E+6 1.23E+8
sdpt3hsd 56 1246.4 - - -6.112 7E-9 9E-11 2E-9 289,728 856,320 3.43E+6 1.23E+8
gurobi 33 351.9 2.1 10.9 -6.112 2E-10 5E-11 9E-12 285,120 738,624 2.34E+6 7.47E+7
mosek 21 179.2 2.0 7.1 -6.112 8E-9 2E-8 2E-8 91,185 648,546 2.51E+6 5.67E+7
mix8 23 721.3 - 0.2 -6.112 4E-10 4E-9 4E-9 289,728 856,320 2.83E+6 1.09E+8

3DsqrfootUB2
M

sdpt3sql 47 348.2 - - -6.048 2E-10 7E-11 8E-9 132,149 502,668 8.24E+6 4.10E+7
sdpt3hsd 89 738.9 - - -6.048 7E-9 6E-11 6E-9 132,149 502,668 8.57E+6 4.12E+7
gurobi 67 323.8 3.4 5.1 -6.048 2E-9 4E-11 8E-12 128,794 432,258 6.56E+6 3.43E+7
mosek 19 60.7 1.3 3.0 -6.048 1E-8 3E-8 3E-8 65,970 430,875 2.58E+6 2.72E+7
mix8 33 293.4 - 0.2 -6.048 5E-9 6E-9 6E-9 132,149 502,668 4.70E+6 4.14E+7

3DtunheadLB
M

sdpt3sql 67 2321.2 - - -22.736 9E-10 7E-9 2E-7 587,983 774,304 5.42E+6 2.00E+8
sdpt3hsd 41 1582.4 - - -22.735 5E-6 1E-5 2E-4 587,983 774,304 5.92E+6 2.03E+8
gurobi 87 1536.9 4.9 22.5 -22.736 1E-5 2E-6 2E-11 583,424 670,209 4.38E+6 1.30E+8
mosek 28 414.5 1.3 12.8 -22.735 1E-7 2E-7 2E-6 486,495 573,281 5.77E+6 1.18E+8
mix8 0 70.1 - 0.5 0.000 2E-1 1E+0 1E+0 587,983 774,304 7.00E+6 2.03E+8

3DtunheadUB
M

sdpt3sql 73 1949.8 - - -32.297 9E-9 2E-9 7E-8 454,879 1,342,528 5.73E+6 1.69E+8
sdpt3hsd 53 1599.3 - - -32.296 7E-6 9E-6 2E-4 454,879 1,342,528 6.62E+6 1.72E+8
gurobi 30 508.7 3.6 16.3 -32.297 2E-6 2E-11 5E-11 445,280 1,152,081 4.53E+6 1.08E+8
mosek 20 217.1 1.0 5.6 -32.293 3E-8 3E-8 3E-8 274,032 980,834 2.96E+6 8.98E+7
mix8 48 1925.7 - 0.3 -32.297 1E-8 3E-11 3E-11 454,879 1,342,528 4.43E+6 1.59E+8

102

Table 5. Available solver performance on the large size problems.
Problem Solver nit tT tP tO pobj pfeas dfeas gap m n nnz(A) nnz(L)

2DfootingLBL
gurobi 144 1875.4 8.4 19.2 -14.834 5E-4 7E-8 2E-9 1,870,400 2,104,900 1.19E+7 9.67E+7

mosek 16 148.3 1.3 38.9 -14.823 8E-9 5E-9 5E-9 1,870,680 2,105,181 1.12E+7 8.55E+7

2DfootingUBL
gurobi 47 357.5 8.1 6.8 -14.877 2E-11 6E-14 5E-12 1,402,240 2,805,740 1.19E+7 7.28E+7

mosek 17 108.3 1.9 24.3 -14.868 4E-10 6E-9 3E-9 1,401,680 2,805,180 7.70E+6 6.53E+7

2DtunnelLBL
gurobi 70 284.6 3.5 4.3 -0.801 1E-4 4E-11 4E-10 844,039 920,600 4.37E+6 3.03E+7

mosek 15 57.8 3.5 13.2 -0.480 5E-8 5E-8 5E-8 513,831 820,353 5.19E+6 2.81E+7

2DtunnelUBL
gurobi 45 145.5 4.9 3.9 -0.813 3E-10 1E-13 1E-12 766,139 1,226,060 4.44E+6 2.63E+7

mosek 15 44.8 4.6 6.9 -0.481 4E-8 3E-8 3E-8 301,965 1,068,447 3.04E+6 1.99E+7

3DsqrexcLBL
gurobi 40 1689.1 93.9 35.9 -123.875 3E-6 7E-7 3E-10 918,352 1,085,953 5.89E+6 2.39E+8

mosek 20 785.3 1.0 22.7 -123.869 1E-8 3E-8 3E-8 763,216 930,818 8.92E+6 2.37E+8

3DsqrexcUBL
gurobi 53 8741.4 5199.0 33.8 -144.453 4E-6 3E-11 6E-11 917,952 2,371,969 8.20E+6 3.29E+8

mosek 17 1108.8 2.2 14.4 -144.429 3E-8 4E-8 4E-8 573,504 2,027,522 6.60E+6 2.93E+8

3DsqrexcUB2L
gurobi 20 567.2 10.4 34.0 -134.449 1E-7 7E-11 6E-11 411,026 1,380,371 2.17E+7 1.45E+8

mosek 24 523.2 5.2 14.0 -134.439 2E-7 3E-8 3E-8 246,277 1,215,623 9.60E+6 1.28E+8

3DsqrfootLBL
gurobi 46 5916.4 6.8 48.8 -5.629 3E-10 2E-11 4E-12 1,225,584 1,451,520 7.49E+6 4.93E+8

mosek 20 3432.3 7.6 51.4 -5.628 2E-8 3E-8 3E-8 914,109 1,347,406 1.58E+7 5.64E+8

3DsqrfootUBL
gurobi 33 3378.4 6.4 35.7 -5.991 5E-10 1E-10 1E-12 969,840 2,508,624 7.97E+6 4.18E+8

mosek 23 2030.6 7.7 27.3 -5.991 1E-8 3E-8 3E-8 394,485 2,287,918 7.93E+6 3.36E+8

3DsqrfootUB2L
gurobi 65 2435.6 10.7 35.5 -5.949 1E-9 1E-11 4E-12 432,446 1,456,514 2.24E+7 1.86E+8

mosek 18 556.1 4.8 12.6 -5.949 1E-8 3E-8 3E-8 221,686 1,453,115 8.92E+6 1.53E+8

3DtunheadLBL
gurobi 51 8512.7 22.6 93.3 -22.752 4E-5 3E-9 1E-10 1,987,776 2,282,113 1.50E+7 6.97E+8

mosek 22 3482.4 4.4 56.6 -22.737 8E-6 1E-6 1E-5 1,658,879 1,953,217 1.98E+7 6.60E+8

3DtunheadUBL
gurobi 52 7787.1 11.5 58.7 -30.780 8E-6 2E-11 8E-12 1,526,976 3,946,393 1.56E+7 6.17E+8
mosek 19 2363.7 3.3 25.0 -30.768 3E-8 3E-8 3E-8 948,024 3,367,442 1.03E+7 5.24E+8

Table 6. The ratio of the number of non-zeros in the factorisation used to determine the
search direction to the number of non-zeros in the constraint matrix as reported by

MOSEK.

 min avg max

2D Small 4 6 7
Medium 5 6 8

Large 5 7 8

3D without UB2 Small 15 17 22
Medium 20 25 31

Large 27 39 51

3D Small 6 14 22
Medium 9 21 31

Large 13 33 51

UB2 only Small 6 7 7
Medium 9 10 11

Large 13 15 17

103

Figure 23. Total solution time vs number of problem constraints for MOSEK. Note that
the number of problem constraints is that of the original problem formulation before

any presolving takes place.

3.4 Improving on the basic IPM implementation
While Mix8 performed well on the two-dimensional problems in the test set, its relative

performance on the three-dimensional problems was significantly less satisfactory. In

seeking to improve the performance of Mix8, major modifications that are likely to

improve its performance include the method used to obtain the search direction at each

iteration of the IPM, how the free variables in the problem are treated by the IPM, and

exploiting any structure in the original problem formulation that may be beneficial such

as fixed variables and dense columns. If a factorisation routine is used to compute the

search direction, the choice of factorisation method and the sparsity-preserving

permutation used can have an order of magnitude difference in performance in terms of

runtime and a considerable difference in the amount of required memory. The common

high-performance factorisation approaches applicable in this case are the multifrontal

and left-looking supernodal methods, while the two common permutations are the

approximate minimum degree and nested dissection (or graph partition) orderings.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0 500,000 1,000,000 1,500,000 2,000,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem constraints

2DfootingLB

2DfootingUB

2DtunnelLB

2DtunnelUB

3DsqrexcLB

3DsqrexcUB

3DsqrexcUB2

3DsqrfootLB

3DsqrfootUB

3DsqrfootUB2

3DtunheadLB

3DtunheadUB

104

Below, the performance of Mix8 is reported comparing the improvements possible with

different reorderings, how free variables are represented, and when some types of

problem structure are exploited.

3.4.1 Choice of direct method
Most described IPMs report that they use supernodal Cholesky factorisations to

determine the search direction at each step of the IPM. Because of the increasingly ill-

conditioned Schur complements, the use of a Cholesky solver generally requires some

way of dealing with non-positive pivots before taking the square root [40]. For the tests

here, a left-looking supernodal Cholesky routine based on CHOLMOD [102] with a

modified BLAS dpotf2 subroutine that substitutes a large value (3210 is used) for any

diagonal entry that is less than or equal to zero, although a more elegant approach is

described by Stewart [205] for non-singular systems.

Table 7 shows the results on the small problem set and Table 8 the results for the

medium problem set. The non-zeros in the factor reported for the supernodal Cholesky

factorisation reflect the total floating point storage required to hold the factor; each

supernode is held in a rectangle, so there are a number of unused entries in the diagonal

block, as well as the zeros introduced through supernode amalgamation. This leads to a

higher effective non-zero count on each problem even though the same ordering is used.

In the small problem set, the supernodal solver reports between an additional two and

14 million non-zeros with an average of six million additional non-zeros over the

multifrontal solver. This increases to an average of 15 million additional non-zeros in

the medium problem set, although, in the case of 3DsqrexcUB2M, the multifrontal

solver reports 345 million non-zeros while the supernodal solver reports just 154

million. This discrepancy is caused by the dynamic reordering in the multifrontal solver

that provides the ability to solve indefinite problems when such situations are

encountered in the numerical phase. The runtime, however, is reduced on all the

problems solved as shown in Figure 24 and Figure 25, with the exception of the lower

bound on the tunnel heading where the multifrontal solver reports a singular system and

the IPM stops before reaching convergence. While there is no major improvement for

the two-dimensional problems, most of the three-dimensional problems benefit

significantly from the use of the supernodal solver over the multifrontal solver. This is

105

especially so for the 3DsqrexcUB2 problems, with almost a 6 × speedup per iteration

on the small problem, and a 13× speedup on the medium problem. The diagonal

perturbation of non-positive pivots has allowed some progress to be made towards

solving the 3DtunheadLB problems. The average time per iteration in the small problem

set was reduced from 4.0s to 2.4s, and from 48.7s to 18.0s on the medium problem set

showing an increasing improvement as the linear system becomes larger. While the

iteration counts are, on average, almost identical at 27.9 and 27.8 iterations per problem

in the small test set and 29.2 and 29.6 in the medium for the multifrontal and supernodal

solvers, respectively, only two of the 12 problems in the small set and one of the 12 in

the medium had the same iteration count. This is due to the small differences in the

computed search direction between the two solvers.

Figure 24. Comparison of the total solution time on the small problem set between the
multifrontal and supernodal direct solvers.

0

100

200

300

400

500

600

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

multifrontal

supernodal

106

Table 7. Comparison of multifrontal and supernodal factorisation on small problem set.
Problem Solver nit tT pobj pfeas dfeas gap m n nnz(A) nnz(L) tT/nit

2DfootingLBS
multifrontal 29 54.0 -14.832 2E-8 2E-8 2E-8 465,360 524,090 2.79E+6 2.75E+7 1.9

supernodal 27 35.1 -14.833 1E-8 2E-8 2E-8 465,360 524,090 2.79E+6 3.42E+7 1.3

2DfootingUBS
multifrontal 22 28.2 -14.916 8E-9 7E-9 7E-9 349,020 698,950 1.92E+6 1.88E+7 1.3

supernodal 24 23.6 -14.916 7E-9 6E-9 6E-9 349,020 698,950 1.92E+6 2.35E+7 1.0

2DtunnelLBS
multifrontal 43 23.2 -0.790 6E-9 8E-9 8E-9 211,799 288,960 1.32E+6 7.84E+6 0.5

supernodal 40 17.0 -0.790 6E-9 8E-9 8E-9 211,799 288,960 1.32E+6 1.03E+7 0.4

2DtunnelUBS
multifrontal 26 13.6 -0.824 5E-9 6E-9 6E-9 192,159 384,400 1.06E+6 6.25E+6 0.5

supernodal 24 10.8 -0.824 6E-9 7E-9 7E-9 192,159 384,400 1.06E+6 8.18E+6 0.4

3DsqrexcLBS
multifrontal 19 121.1 -121.988 7E-10 7E-9 7E-9 164,355 233,472 1.74E+6 3.60E+7 6.4

supernodal 19 75.6 -121.988 1E-9 9E-9 9E-9 164,355 233,472 1.74E+6 4.83E+7 4.0

3DsqrexcUB2S
multifrontal 49 525.3 -138.242 2E-9 9E-9 9E-9 83,189 260,908 1.99E+6 3.83E+7 10.7

supernodal 51 90.3 -138.244 2E-9 6E-9 6E-9 83,189 260,908 1.99E+6 2.38E+7 1.8

3DsqrexcUBS
multifrontal 23 89.9 -155.149 1E-9 9E-9 9E-9 188,927 487,392 1.32E+6 3.04E+7 3.9

supernodal 23 62.9 -155.149 1E-9 1E-8 1E-8 188,927 487,392 1.32E+6 4.11E+7 2.7

3DsqrfootLBS
multifrontal 23 152.0 -5.492 5E-10 5E-9 5E-9 153,648 208,008 1.79E+6 3.55E+7 6.6

supernodal 24 82.5 -5.492 5E-10 5E-9 5E-9 153,648 208,008 1.79E+6 4.40E+7 3.4

3DsqrfootUB2S
multifrontal 32 56.9 -6.170 3E-9 4E-9 4E-9 56,549 213,708 2.00E+6 1.16E+7 1.8

supernodal 30 33.1 -6.170 3E-9 5E-9 5E-9 56,549 213,708 2.00E+6 1.48E+7 1.1

3DsqrfootUBS
multifrontal 25 124.5 -6.234 3E-10 3E-9 3E-9 121,932 360,720 1.19E+6 3.08E+7 5.0

supernodal 24 78.5 -6.234 4E-10 4E-9 4E-9 121,932 360,720 1.19E+6 4.40E+7 3.3

3DtunheadLBS
multifrontal 0 11.1 0.000 3E-1 1E+0 1E+0 246,167 324,792 2.91E+6 5.55E+7 -

supernodal 12 67.9 -21.229 7E-5 2E-4 2E-4 246,167 324,792 2.91E+6 6.89E+7 5.7

3DtunheadUBS
multifrontal 44 251.1 -33.432 7E-9 5E-11 5E-11 190,151 561,528 1.85E+6 4.18E+7 5.7
supernodal 36 128.4 -33.432 3E-8 4E-9 4E-9 190,151 561,528 1.85E+6 5.20E+7 3.6

Figure 25. Comparison of the total solution time on the medium problem set between
the multifrontal and supernodal direct solvers.

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

multifrontal

supernodal

107

Table 8. Comparison of multifrontal and supernodal factorisation on medium problem
set.

Problem Solver nit tT pobj pfeas dfeas gap m n nnz(A) nnz(L) tT/nit

2DfootingLBM
multifrontal 24 127.3 -14.832 1E-8 2E-8 2E-8 1,050,840 1,183,035 6.30E+6 6.86E+7 5.3

supernodal 25 90.0 -14.832 4E-8 1E-8 1E-8 1,050,840 1,183,035 6.30E+6 8.44E+7 3.6

2DfootingUBM
multifrontal 23 86.2 -14.885 9E-9 8E-9 8E-9 788,130 1,577,625 4.33E+6 5.13E+7 3.7

supernodal 23 63.3 -14.890 8E-9 7E-9 7E-9 788,130 1,577,625 4.33E+6 6.28E+7 2.8

2DtunnelLBM
multifrontal 44 60.5 -0.798 5E-9 7E-9 7E-9 476,099 649,440 2.98E+6 1.90E+7 1.4

supernodal 41 43.6 -0.798 7E-9 1E-8 1E-8 476,099 649,440 2.98E+6 2.51E+7 1.1

2DtunnelUBM
multifrontal 25 33.4 -0.816 6E-9 7E-9 7E-9 432,239 864,600 2.38E+6 1.58E+7 1.3

supernodal 24 26.9 -0.816 5E-9 6E-9 6E-9 432,239 864,600 2.38E+6 2.03E+7 1.1

3DsqrexcLBM
multifrontal 21 1817.6 -125.524 3E-9 7E-9 7E-9 554,048 787,968 5.91E+6 2.29E+8 86.6

supernodal 19 961.1 -125.524 9E-10 8E-9 8E-9 554,048 787,968 5.91E+6 3.09E+8 50.6

3DsqrexcUB2M
multifrontal 60 15941.1 -135.578 6E-9 1E-8 1E-8 273,389 866,604 6.63E+6 3.45E+8 265.7

supernodal 61 1211.7 -135.578 8E-9 2E-8 2E-8 273,389 866,604 6.63E+6 1.54E+8 19.9

3DsqrexcUBM
multifrontal 23 1242.8 -148.410 3E-9 5E-9 5E-9 639,359 1,649,592 4.49E+6 1.89E+8 54.0

supernodal 22 717.8 -148.409 2E-9 2E-8 2E-8 639,359 1,649,592 4.49E+6 2.50E+8 32.6

3DsqrfootLBM
multifrontal 26 956.2 -5.557 5E-10 5E-9 5E-9 363,904 492,672 4.25E+6 1.24E+8 36.8

supernodal 27 639.3 -5.557 9E-10 9E-9 9E-9 363,904 492,672 4.25E+6 1.77E+8 23.7

3DsqrfootUB2M
multifrontal 33 293.4 -6.048 5E-9 6E-9 6E-9 132,149 502,668 4.70E+6 4.14E+7 8.9

supernodal 30 156.9 -6.048 4E-9 7E-9 7E-9 132,149 502,668 4.70E+6 5.24E+7 5.2

3DsqrfootUBM
multifrontal 23 721.3 -6.112 4E-10 4E-9 4E-9 289,728 856,320 2.83E+6 1.09E+8 31.4

supernodal 25 451.2 -6.112 2E-10 2E-9 2E-9 289,728 856,320 2.83E+6 1.46E+8 18.0

3DtunheadLBM
multifrontal 0 70.1 0.000 2E-1 1E+0 1E+0 587,983 774,304 7.00E+6 2.03E+8 -

supernodal 16 550.0 -22.334 2E-4 9E-5 1E-4 587,983 774,304 7.00E+6 2.55E+8 34.4

3DtunheadUBM
multifrontal 48 1925.7 -32.297 1E-8 3E-11 3E-11 454,879 1,342,528 4.43E+6 1.59E+8 40.1
supernodal 42 983.6 -32.297 8E-7 1E-9 1E-9 454,879 1,342,528 4.43E+6 2.04E+8 23.4

3.4.2 Matrix reordering
While the AMD ordering performs satisfactorily for the two dimensional problems, the

size of the factorisations in the three dimensional problems grows significantly. The

graph partitioning ordering is used in MOSEK for all of the three-dimensional problems

because of the fewer non-zeros in the factorisation. The two orderings were compared

using the supernodal Cholesky solver and split free variables. The AMD ordering was

computed by HSL MC50 while the ND ordering is computed by METIS [116]. The total

solution time with the two solvers is shown in Figure 26 with the non-zero counts in

Figure 27, and complete results are shown in Table 9.

The number of iterations was very similar, except for the small and medium-sized lower

bound tunnel heading problems, which showed large differences, although in opposite

directions. An obvious difference, though, can be seen between the two-dimensional

and three-dimensional problems in Figure 26, with the two-dimensional problems

barely showing at the appropriate scale for the three-dimensional problems. The

108

difference in the solution time is greater than that between the non-zero counts shown in

Figure 27 because the required floating point operations is approximately the sum of the

square of the column (or row) counts, resulting in noticeably larger runtime differences

than storage differences. Specifically, the number of non-zeros in the Cholesky factor

ranged from 15% more to 180% more with the AMD ordering. On average, the AMD

ordering led to over 60% larger factors than the ND ordering. For the large three

dimensional problems, the range was 65% to 180% more non-zeros, with an average of

110%. This led to the IPM with the AMD ordering running 1.0 to 7.7 × times slower,

with an average of 2.5 × slower, than the ND ordering. For the large three dimensional

problems, the minimum speedup was 2.4 × and the average 4.7 × . A performance

profile of the results on the test is shown in Figure 28.While not all problems were

solved to the desired tolerance, the only problems that did not finish with a primal

infeasibility of less than 610− were the lower bound tunnel headings.

Figure 26. Comparison of the total solution time on the large problem set between the
AMD and ND orderings.

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

AMD

ND

109

Figure 27. Comparison of the number of non-zeros between the AMD and ND
orderings. The last letter of the ordering indicates whether the problem is from the

small (S), medium (M), or large (L) test set.

Table 9. Comparison of AMD and ND ordering with supernodal Cholesky solver.

S M L

Problem Ordering nit tT nnz(L) nit tT nnz(L) nit tT nnz(L)

2DfootingLB AMD 27 35.3 34,176,470 27 98.3 84,432,074 23 169.2 161,724,772

ND 28 30.7 26,597,626 26 71.4 64,196,268 24 123.8 116,193,876

2DfootingUB AMD 23 23.1 23,492,620 22 61.3 62,771,568 19 91.1 106,148,904

ND 23 21.1 18,859,208 22 49.0 44,888,168 19 84.5 85,687,344

2DtunnelLB AMD 36 14.5 10,262,970 41 41.0 25,075,799 41 82.5 50,116,055

ND 36 14.5 8,764,682 41 39.0 20,923,476 41 73.8 38,946,661

2DtunnelUB AMD 23 9.6 8,182,072 22 22.9 20,276,016 22 42.7 38,467,957

ND 23 9.7 7,017,616 22 21.8 16,556,341 22 39.9 30,413,594

3DsqrexcLB AMD 19 64.9 44,426,757 20 1013.1 305,968,704 24 5058.0 835,631,569

ND 19 28.0 29,637,786 20 226.5 148,895,546 24 657.2 297,682,560

3DsqrexcUB AMD 23 59.3 41,126,846 22 710.4 250,321,643 23 5350.1 961,216,058

ND 22 32.7 26,818,343 22 258.8 139,726,394 23 1332.3 444,358,967

3DsqrexcUB2 AMD 45 80.0 23,802,678 61 1194.5 153,633,398 55 6900.6 556,984,986

ND 45 45.4 16,374,115 61 414.8 83,756,367 61 1942.3 270,925,139

3DsqrfootLB AMD 22 76.6 44,029,048 26 608.8 177,254,045 24 7833.7 1,079,674,994

ND 22 34.9 31,095,777 26 182.3 96,346,187 24 1636.0 503,500,942

3DsqrfootUB AMD 22 71.9 44,031,780 23 405.8 145,811,716 25 5947.1 886,908,573

ND 22 32.3 26,597,381 23 153.1 85,655,921 25 1721.1 467,076,084

3DsqrfootUB2 AMD 24 26.7 14,846,231 25 128.9 52,368,502 25 1435.5 317,849,414

ND 24 19.0 11,543,046 25 71.1 36,142,232 25 598.9 192,568,328

3DtunheadLB AMD 27 149.9 69,603,801 24 837.7 260,683,703 22 12277.3 1,670,110,569

ND 15 32.4 45,049,383 49 482.3 140,127,684 18 1617.7 733,578,413

3DtunheadUB AMD 30 110.1 51,998,007 31 728.2 203,885,049 39 12998.9 1,284,339,958
ND 30 63.5 38,770,079 31 293.4 123,913,631 35 3249.8 673,234,352

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

N
on

-z
er

os
 in

 fa
ct

or

M
ill

io
ns

Problem

AMDS

NDS

AMDM

NDM

AMDL

NDL

110

Performance profiles will be used extensively in the following sections to visualise the

relative effectiveness of different solution approaches. The performance profile was

presented by Dolan and Moré [206] and show, for each solver, what percentage of

problems is solved within α of the best performing solver, from 0% to 100%. In this

case, the profile shows that the ND ordering provides a significant performance benefit

over the AMD ordering, easily outweighing the greater cost of computing the ND

ordering. The profile indicates that two thirds of the problems solved using the AMD

ordering require at least 2.7 × the runtime when using the ND ordering.

Figure 28. Performance profile of IPM runtime by orderings. Both methods used

supernodal Cholesky, no presolve, and free variables were split.

3.4.3 Dealing with free variables
As discussed above in Section 1.3.3, there are various ways of dealing with free

variables. It cannot be expected that these methods will perform the same or even

similarly due the quite different way the problem is formulated. It is thus reasonable to

compare the performance of the different approaches. In the following, free variables

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

AMD

ND

111

are either split as the difference between two linear variables, embedded in a second-

order cone, or the diagonal entries of the ()1,1 block in the augmented equations

associated with the free variables are perturbed with a small value (1010− is used) to

make the block non-singular. The cone embedding uses a single cone per variable,

which is not the only way. For example, SeDuMi embeds all free variables in a single

cone, but this means the ()1,1 block in the augmented equations has a very large dense

diagonal block when there is many free variables in the problem, and increases the

density of the coefficient system in the Schur complement equation. Runtime

comparisons are provided in Figure 29 and Figure 30, with complete results in Table 10,

and the performance profile in Figure 31.

Interestingly, Figure 29 shows quite similar performance in terms of the total solution

time between the three methods across the small problem set, although the differences

are magnified in the large problems shown in Figure 30. The regularised approach does

not work for the 3DtunheadLB problems and has trouble on the medium and large

versions of 3DsqrexcLB. Moreover, the regularised approach appears to struggle on the

3DsqrexcUB problems also, where approximately one third of the variables are free

variables, compared with around one sixth for the other two three-dimensional upper

bound problems. The quadratic upper bound formulation of the square excavation does

not present the same difficulty, however, with the regularised approach performing

significantly better than splitting the variables or embedding them in a quadratic cone.

Moreover, the regularised approach often outperforms the other two approaches when

there is a small proportion of free variables, suggesting that it is likely to be the

preferred approach if the number of free variables can be kept low or modified to be so.

Embedding the free variables in a quadratic cone exhibits generally increases the

required runtime and iterations taken to converge over the splitting of variables, with an

average runtime average runtime of 1231.9s and 31.1 iterations on the large problems

compared to 1089.8s and 28.4 iterations when splitting the free variables on the large

problems. Table 10 shows the complete results across the three approaches. The

columns are as previously described and ()max pinf,dinf,relgapφ = .

112

The performance profile in Figure 31 supports the notion that the regularised approach

is generally the fastest, but struggles on the problems with a high proportion of free

variables. Splitting free variables performs satisfactorily compared with the

regularisation approach, and consistently outperforms the quadratic cone embedding

approach.

Figure 29. Comparison of the total solution time on the small problem set between the
three approaches to handling free variables considered.

Figure 30. Comparison of the total solution time on the large problem set between the

three approaches to handling free variables considered.

0
10
20
30
40
50
60
70
80

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

lin

reg

soc

0
1,000
2,000
3,000
4,000
5,000
6,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

lin

reg

soc

113

Table 10. Comparison of approaches to handle free variables. The three methods
compared are the split into two linear variables (LIN), regularisation (REG), and

embedding within a second-order cone (SOC).

S M L

Problem Method nit tT ϕ nit tT ϕ nit tT ϕ

2DfootingLB
lin 28 30.7 1E-08 26 71.4 3E-08 24 123.8 3E-08

reg 28 30.5 1E-08 24 67.0 2E-08 21 110.4 3E-08

soc 28 30.4 1E-08 25 69.3 5E-08 25 129.0 4E-08

2DfootingUB
lin 23 21.1 7E-09 22 49.0 8E-09 19 84.5 7E-09

reg 24 22.0 7E-09 23 50.7 8E-09 19 84.0 8E-09

soc 24 22.1 7E-09 23 51.0 8E-09 19 84.3 8E-09

2DtunnelLB
lin 36 14.5 9E-09 41 39.0 8E-09 41 73.8 8E-09

reg 36 13.6 2E-07 33 30.1 2E-06 31 52.8 6E-05

soc 40 17.3 8E-09 41 42.3 1E-08 41 79.1 8E-09

2DtunnelUB
lin 23 9.7 6E-09 22 21.8 9E-09 22 39.9 7E-09

reg 24 9.2 7E-09 19 17.6 1E-07 25 41.7 6E-09

soc 24 11.0 7E-09 24 25.7 6E-09 24 47.5 7E-09

3DsqrexcLB
lin 19 28.0 6E-09 20 226.5 9E-09 24 657.2 8E-09

reg 20 29.4 1E-08 1 16.6 1E+00 1 38.1 1E+00

soc 19 26.8 9E-09 19 213.9 8E-09 26 702.2 5E-09

3DsqrexcUB
lin 22 32.7 9E-09 22 258.8 7E-09 23 1332.3 7E-09

reg 24 34.4 5E-09 32 358.1 1E-07 61 3427.8 5E-06

soc 23 35.5 1E-08 23 274.4 5E-09 24 1341.4 1E-07

3DsqrexcUB2
lin 45 45.4 6E-09 61 414.8 5E-08 61 1942.3 9E-08

reg 30 28.5 2E-07 30 199.4 2E-07 30 935.7 1E-07

soc 51 53.0 6E-09 61 425.6 2E-08 61 1897.7 4E-07

3DsqrfootLB
lin 22 34.9 8E-09 26 182.3 3E-09 24 1636.0 1E-08

reg 20 31.7 9E-09 22 154.2 6E-09 24 1632.4 9E-09

soc 24 38.3 5E-09 27 185.2 9E-09 26 1729.2 8E-09

3DsqrfootUB
lin 22 32.3 6E-09 23 153.1 5E-09 25 1721.1 6E-09

reg 19 27.7 6E-09 20 132.3 3E-09 22 1521.6 4E-09

soc 24 35.8 4E-09 25 168.5 2E-09 27 1872.2 5E-09

3DsqrfootUB2
lin 24 19.0 7E-09 25 71.1 8E-09 25 598.9 6E-09

reg 19 14.5 4E-09 19 53.1 6E-09 19 451.4 3E-09

soc 30 23.6 5E-09 30 88.3 7E-09 33 739.2 6E-09

3DtunheadLB
lin 15 32.4 6E-05 49 482.3 2E-05 18 1617.7 3E-04

reg 1 3.8 1E+00 1 14.1 1E+00 1 114.5 1E+00

soc 22 50.9 6E-05 25 245.5 6E-04 13 1126.6 8E-04

3DtunheadUB
lin 30 63.5 9E-09 31 293.4 1E-08 35 3249.8 2E-08
reg 29 60.7 9E-09 22 198.2 1E-05 32 3056.8 8E-09
soc 33 71.1 1E-08 41 394.5 2E-08 54 5035.2 5E-08

114

Figure 31. Performance profile of IPM runtime by free variable approach.

3.4.4 Presolving
An important phase in solving optimisation problems arises before the solver algorithm

begins. This presolve phase can often reduce solve times considerably [207]. Thus,

much effort (see, for example, [73], [208], [209]) has been spent seeking approaches to

automatically improve the problem formulation before attempting to solve the

mathematical program. As a result, a wide range of cheap heuristics have been

developed that sometimes result in a significant improvement in computational speed.

This presolve often involves manipulation of the upper and lower bounds on each of the

linear variables looking for fixed and implied free variables, and the elimination of free

variables. Unfortunately, much of the work on LP presolving does not carry over to

second-order cone and semidefinite cone based programming because of the difference

introduced by the conic constraints. However, performance improvements can still be

gained by using an effective presolve procedure.

The three main components that benefit the solution of FELA problems are the

elimination of free variables, the treatment of fixed variables subject to conic

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1 1.5 2 2.5 3

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

Linear

Regularised

Second-order cone

115

constraints, and handling dense columns in the constraint matrix efficiently. While

various other strategies may be employed, these do not appear to provide much payoff.

A description of these presolve procedures is outlined below, including details on the

efficient implementation of the methods.

3.4.4.1 Eliminating free variables
While most authors mention the difficulties posed by free variables in the FELA

problem formulation, few provide beneficial methods of dealing with them.

Makrodimopoulos and Martin [25] describe how the free variables may be eliminated

from a lower bound formulation, but only achieve around 10% improvement in

performance. This is likely to be a result of MOSEK being able to efficiently handle the

free variables. In the following, an outline is given of the efficient elimination of some

(possibly all) free variables from the problem before solving the optimisation problem

using purely algebraic conditions. A direct comparison is then made between the solver

performance with and without this presolve procedure. Note that a post-solve is also

required if free variables are eliminated in order to return a solution suitable for

interpretation of the results by the calling program. This matter involves a few cheap

operations which are shown in Section 1.3.3.

The common method for eliminating free variables consists of iteratively checking for

columns in the constraint matrix associated with a free variable that has only one non-

zero in it; this is known as a column singleton. A column singleton associated with a

free variable can be used as a pivot to eliminate one equation (the equation containing

the non-zero in the singleton column) from the constraint matrix without causing any

fill-in. Additionally, and perhaps more importantly with regards to the efficiency of the

number of iterations of the IPM, the free variable is also eliminated from the problem.

Other “tricks” involving concepts including doubleton equations (equations with just

two non-zero coefficients), the removal of fixed variables, and sparsity increasing

constraint equation manipulations [208], [209] can lead to columns associated with the

free variables being reduced to singleton columns, allowing additional free variables to

be eliminated from the problem without fill-in. Another approach used by some authors

seeks to find a full rank row-set of as many free variables as possible on which it is

possible to block-pivot without causing too much fill-in and eliminating as many free

116

variables as possible. Because it may not be possible to find a suitable sparsity-

preserving and stable block pivot for all free variables, the partitioning leads to

 B BR N

N NR N

E E A
E E A

,

where the row set B contains the equations to be eliminated from the problem and the

remaining rows are in the set N , BE is the non-singular block pivot, the *RE matrices

contain the set of columns of the constraint matrix associated with free variables not

being eliminated (possibly empty). This method was outlined by Mészáros [73], who

used a Markowitz criterion with a maximum Markowitz count of four. This means that

a free variable was only eliminated if one less than the number of entries in the pivot

row, multiplied by one less than the number of entries in the pivot column, was less

than or equal to four. Note that this approach does not consider the actual fill-in, but

instead uses an upper bound on the fill-in as a heuristic. An alternative interpretation is

that it minimises the number of updates to the active submatrix when the rank-one outer

product update is made to the active submatrix upon eliminating the free variable. The

use of linked lists provides a simple way to find the next pivot of lowest or low

Markowitz-count subject to the stability threshold at each step [210]. The process

continues until a suitable pivot can no longer be found.

This approach can be modified to use an approximate minimum local fill-count at each

step, similar to that outlined for the reordering of the Schur complement system in [115]

(except that the ordering is not computed a priori in contrast with the static ordering for

the SPD system). A limited number of columns are searched in order of increasing

column count [211] for a pivot satisfying the stability threshold ()maxij ja τ≥ × A for

some scalar []0,1τ ∈ which produces a minimum fill score upon elimination of this

pivot. The fill score is calculated as the amount of fill-in produced by using the pivot

less the number of non-zeros remaining in the pivot column and pivot row in the active

submatrix plus one (because the pivot occurs in both the row and the column). An

efficient procedure for finding such a pivot checks for stability of the potential pivot,

and then computes the amount of fill-in caused by the stable potential pivot. The fill-in

can be computed by negating the row pointers in the CSR structure of the active

117

submatrix corresponding to a non-zero in the potential pivot column, and then

comparing it with all the other columns containing an entry in the potential pivot row.

In each of these columns, the amount of fill-in can be computed by scanning the column

and keeping track of the number of common entries. The amount of fill-in in this

column is the length of the potential pivot column less the number of common entries.

At this point, it is also simple to check the number of entries that would exist in this

column if the potential pivot were chosen. This is important for some problems if no

method to handle “dense” columns (generally those columns which lead to high cost in

forming and factorising the Schur complement system) in the constraint matrix is used

and the Schur complement system is used to obtain the search direction. In such a case,

it is possible to add an additional constraint on the pivot selection that limits the

maximum growth of any column in the constraint matrix. Significant performance gains

can be achieved by monitoring the progressive fill score, and stopping the fill-count

computation as soon as it is greater than the maximum score allowed. After all of the

columns have been checked, the fill score is then computed by subtracting the number

of entries in the potential pivot row and potential pivot column and adding one. Note

that if a potential pivot is found to be stable and exists on a singleton row or singleton

column, it is chosen immediately, without further searching. After a pivot is chosen, the

LU factors of BE are updated, as is the active submatrix.

A less sophisticated but cheaper approach that avoids the use of the Markowitz table

searches each free-variable column in some predetermined order, with a stable pivot

chosen if its fill score is less than the maximum or it occurs on a singleton row or

singleton column. To demonstrate the effectiveness of each approach, both the

approximate minimum local fill-in and the static order minimum local fill-in schemes

were used to eliminate as many free variables from each of the small test problems as

possible, and then solved using Mix8 with the supernodal Cholesky solver. Note that the

primal and dual objective constants are added to the objective function value computed

in the IPM, and the primal objective function c and constraint right-hand side b are

modified as shown in Section 1.3.3

118

3.4.4.2 Handling dense columns
A column with a large number of non-zeros in the constraint matrix, relative to the other

columns, leads to a considerably more dense Schur complement system than would be

the case if the column did not contribute to the Schur complement system. For this

reason, various approaches for reducing the impact of dense columns have been

developed [212], [213]. The approach used here is based on Andersen’s [213] modified

Schur complement method and is detailed below.

Let DA contain the dense columns of the constraint matrix, A , and the remaining

columns be SA . If the ()1,1 block of the augmented equations, 2−F (including

diagonal scaling for linear variables and perturbations for free variables along), is

partitioned accordingly, then the system to be solved is

2

2

T
D D D D

T
S S S S

D S

 −
 − =

F A x p
F A x p

A A y q
.

Eliminating Sx gives

2

22

T
DDD D

T
S S SD S S S

−−

 −
= +

pxF A
q A F pyA A F A

.

This differs from Andersen’s approach in that 2
DF need not be the identity matrix,

indeed, it is not even assumed to be non-singular or contain any non-zero entries. This

approach allows dense columns associated with free variables to be treated explicitly,

without any perturbations or modification to a conic variable. In contrast, Andersen’s

method will require any dense columns that are free variables to be treated by some

method considering them as a conic variable, increasing the amount of work needed to

be done and memory requirements, and introducing the difficulties known to be caused

by splitting free variables. If 2T T
S S S

−=LL A F A and y is eliminated from the first block

row, the resulting equation is

 () ()2 1 1 2T T T
D D D D D D S S S

− − − − −− + = + +F A L L A x p A L L q A F p .

This suggests the following steps compute the solution:

119

1. compute the Cholesky factorisation 2T T
S S

−=LL A F A ;

2. solve D=LV A ;

3. solve ()2
S S S

−= +Lr q A F p ;

4. solve () ()2 T T
D D D+ = − +F V V x p V r ;

5. solve ()T
D= −L y r Vx ; and

6. solve 2 T
S S S S− = +F x p A y .

From the above it is apparent that an additional solve with the triangular factor plus the

solution with the coefficient system 2 T
D +F V V is required. Note also that even if A is

of full row rank, SA may not be and so there is no guarantee that the factorisation

2T T
S S S

−=LL A F A exists. Although Andersen [213] suggests using the method described

by Stewart [205], it was found that this procedure was not necessary for the FELA test

problems, in which there is no more than a single dense column as a result of the

elimination of free variables, and no dense columns in the original constraint matrices

are present.

3.4.4.3 Eliminating fixed variables subject to a conic constraint
A fixed variable arises from a row singleton in the constraint matrix. If the variable is a

free variable, it may be substituted out of the problem immediately (see Section

3.4.4.1). Similarly, linear variables may be eliminated if they are non-negative (if they

are negative, the primal problem is infeasible). If, however, the fixed variable is part of

a second-order cone constraint (or semidefinite constraint), then they may not be

substituted out so easily. If the first variable associated with the k th second-order cone

constraint is fixed, e.g. j ix b= (that is, the j th variable has the only non-zero

coefficient in the i th constraint and is in the k th second-order cone), there are three

cases:

• 0jx = , in which case all the other variables in the k th constraint must also be

zero (by definition of the second-order cone), and so all of the values may be

substituted out of the problem;

120

• 0jx ≠ and the optimal value of kx lies on the boundary of the second-order

cone; or

• 0jx ≠ and the optimal value of kx lies on the interior of the second-order cone.

Because the values of the unfixed variables associated with the k th second-order cone

are not known in the second and third cases, the variable may not be removed from the

problem. Similar reasoning prevents the remaining variables from being removed if

they are fixed. If the situation arises in which both the first variable and one of the other

variables in the same cone are both fixed, then the variables may be “aggregated” and

the cone size reduced by one for each aggregation [36]. For example, if the first variable

of the k th cone 4jx = , and the third variable in the same cone 2 4jx + = . The variable

2jx + may be eliminated from the problem after setting 2 2
2 3j j jx x x +′ = − = , reducing the

cone size by one [36].

Andersen et al. [57] show that the fixed variables constrained by a second-order cone

may be further exploited to reduce the computational effort required to compute the

search direction. For each of the fixed variables, they may be easily eliminated from

every other constraint. Then the fixed variables may be symmetrically permuted in the

augmented form of the equations such that

11 12 1 1

2 221 22

1 1

2 2

ˆ

ˆ

TT
T

− −
 − − − = = =

H H 0 I x p
x px H H A 0 pH A

P P P P
y qy qA 0 0 A 0 0
y qI 0 0 0

,

where Â are the constraints with no fixed variables (possibly containing dense

columns), x and y are the unknowns, and p and q represent the right-hand side. From

the fourth block equation, it is obvious that 1 2=x q . This can be substituted into the

second block equation which can then be solved for 2x and 1y :

 2 2 21 222

1 1

ˆ

ˆ

T +−
=

x p H qH A
y qA 0

.

This may be reduced to the SPD form

121

 ()1 1
22 1 1 22 2 21 2

ˆ ˆ T− −= + +AH A y q AH p H q (3.1)

to compute 1y , which can then be used to obtain 2x as

 ()1
2 22 2 21 2 1

ˆ−= − + −x H p H q Ay . (3.2)

Finally, 2y can be found from

 2 1 11 1 12 2= + +y p H x H x . (3.3)

These operations may all be performed easily by making a few modifications and

implementing some additional routines for the matrix-vector multiplies and solves

involving the partitioned H . Some details are provided below. The partitioning of H as

 11 12 1 1 12

21 22 2 2 2

2
T

θ −
= − +

H H Q 0 w w
H H 0 Q w w

(where the Q blocks are diagonal with entries 1±), allows the inverse of 22H to be

easily obtained using the Sherman-Morrison-Woodbury formula, giving

 1 2
22 2 2 2 2 2

2 2 2

2
1

T
Tθ− −

= − − −
H Q Q w w Q

w Q w
 (3.4)

(note that 1
i i

−=Q Q holds for any submatrix of a symmetric permutation of Q for a

second-order cone). This is needed for matrix-vector multiplication as well as

construction of the Schur complement matrix. Both operations require the factor

() 1

2 2 21 T −
− w Q w of the right-hand side in (3.4), so it is useful to compute this once for

each iteration. The matrix-vector multiplication is easily applied with the inverse by

only treating those variables whose index is not that of a fixed variable. By maintaining

a compressed list of unfixed variables in each cone (with a pointer to the start of a list of

each cone’s unfixed variables, much like a CSR or CSC structure), it is trivial to

perform the multiplication with the corresponding entries in 2w . The construction of

the Schur complement matrix is simplified by only storing Â (storing it in the

conventional CSC structure), and scaling each outer-product associated with a fixed

variable by the factor discussed above. Note that because the columns in Â

122

corresponding to the fixed variables are zero, no further modifications to the

implementation of the construction of the Schur complement matrix is necessary. This

does require the modification of each matrix-vector product involving the matrix A ,

which is easily performed with a list of the fixed variables (note that storing value of the

fixed variable in the right-hand side vector b removes the need to store the coefficients

in the fixed constraints as they are all simply one). The multiplications with 21H and

[]11 12H H are most naturally performed with a list of the fixed variables, which are

already stored for the matrix-vector products.

3.4.4.4 Presolve results
The problem set was tested again with an initial check for fixed variables before

attempting to eliminate as many free variables as possible and checking for dense

columns. Note that in some cases, additional fixed variables were present after the

elimination, but were not exploited. Marginal improvements could be expected by

repeating the presolve process until no more fixed variables can be identified nor free

variables eliminated. The free variable elimination restricted the fill-in to ensure that

any single elimination would not increase the size of the effective constraint matrix, i.e.

if a free variable has rn other variables in its row and cn other variables in it column in

the active part of the constraint matrix, then elimination will be allowed if it results in

no more than r cn n+ fill-in entries. The Markowitz-based search searched a maximum

of one column with a suitable free variable for elimination, and the pivot stability

criterion for potential pivot ija used was ()110 maxij ja a−≥ , where ja is the j th

column of A . A column was considered dense if it contained more than 5 × the average

number of entries per column. The complete results of the presolve process are shown

in Table 11 and the IPM results are shown in Table 12 alongside the results from

Section 3.4.4.2 with split and regularised free variables for comparison.

Presolving appears to reduce the number of iterations, the number of non-zeros in the

Cholesky factor, and the total runtime when compared to both of the other approaches

in the table. The iteration counts are shown in Figure 32 where the only problem in

which the presolved approach does not converge with fewer iterations than either of the

other approaches is on 3DtunheadLB, where it solves the problem to a smaller tolerance

123

than that of the split free variables. Figure 33 shows that the presolve approach does

reduce the number of non-zeros in the Cholesky factor, but not significantly so given

the reduction in the dimension of the linear system seen in Table 12. This is because the

Gaussian elimination of the columns associated with free variables results in additional

entries in the constraint matrix. But, because of the factorisations computation time

being proportional to the square of the column counts, this leads to a more pronounced

improvement in the runtime between the approaches as shown in Figure 34.

On the large problems, the total time to solve all problems was 8617s with the presolve

method and 13,077s without (split free variables). Note that the lower bound tunnel

heading was solved to the desired accuracy using the presolve method, but was not by

the other approaches. For the large three dimensional problems, except the

3DtunheadLB problem (that was not solved to satisfactory tolerance without

presolving), using a presolve method led to a 1.75× speedup over the approach splitting

free variables and without presolving. In many cases, presolving also led to a significant

reduction in the size of the Cholesky factor and a consequent reduction in runtime over

even the regularised free variable approach. presents the performance profile and

displays the clear benefit of presolving the problems in the test set.

Figure 32. Comparison of the iteration count on the large problem set between the
presolved problems and two approaches for handling free variables.

0
10
20
30
40
50
60
70

It
er

at
io

ns

Problem

lin

preg

reg

124

Figure 33. Comparison of the number on non-zeros in the factor on the large problem
set between the presolved problems and two approaches for handling free variables.

Figure 34. Comparison of the total solution time on the large problem set between the
presolved problems and two approaches for handling free variables.

0
100
200
300
400
500
600
700
800

N
on

-z
er

os
 in

 fa
ct

or

M
ill

io
ns

Problem

lin

preg

reg

0
500

1,000
1,500
2,000
2,500
3,000
3,500

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

lin

preg

reg

125

Table 11. Presolve results.
Problem nF Eliminations Fixed variables identified Dense columns

2DfootingLBS 280 280 0 0

2DfootingLBM 420 420 0 0

2DfootingLBL 560 560 0 0

2DfootingUBS 980 980 0 0

2DfootingUBM 1,470 1,470 0 0

2DfootingUBL 1,960 1,960 0 0

2DtunnelLBS 58,080 1,505 57,600 1

2DtunnelLBM 130,320 2,257 129,600 1
2DtunnelLBL 231,360 3,011 230,400 1

2DtunnelUBS 77,480 51,404 76,480 1

2DtunnelUBM 173,820 115,162 172,320 1
2DtunnelUBL 308,560 204,710 306,560 1

3DsqrexcLBS 43,008 43,007 0 1

3DsqrexcLBM 145,152 145,151 0 1
3DsqrexcLBL 271,488 271,487 0 1

3DsqrexcUBS 119,280 119,279 0 1

3DsqrexcUBM 399,708 399,707 0 1
3DsqrexcUBL 944,064 944,063 0 1

3DsqrexcUB2S 56,726 56,725 0 1

3DsqrexcUB2M 184,470 184,469 0 1
3DsqrexcUB2L 429,158 429,157 0 1

3DsqrfootLBS 26,244 756 25,920 0

3DsqrfootLBM 62,016 1,344 61,440 0
3DsqrfootLBL 208,656 3,024 207,360 0

3DsqrfootUBS 48,492 12,070 43,956 0
3DsqrfootUBM 113,088 25,662 105,024 0

3DsqrfootUBL 375,408 76,702 357,264 0

3DsqrfootUB2S 29,094 3,149 25,920 0
3DsqrfootUB2M 67,014 5,533 61,440 0

3DsqrfootUB2L 219,750 12,305 207,360 0

3DtunheadLBS 42,300 42,299 0 1
3DtunheadLBM 99,920 99,919 0 1

3DtunheadLBL 335,736 335,735 0 1

3DtunheadUBS 77,400 77,399 0 1
3DtunheadUBM 180,848 180,847 0 1

3DtunheadUBL 600,984 600,983 0 1

126

Table 12. Comparison of presolve performance. Note that nnz(L) presents thousands of
non-zeros.

 S M L

Problem Approach nit tT nnz(L) ϕ nit tT nnz(L) ϕ nit tT nnz(L) ϕ

2DfootingLB

lin 28 30.7 26,598 1E-8 26 71.4 64,196 3E-8 24 123.8 116,194 3E-8

reg 28 30.5 26,598 1E-8 24 67 64,196 2E-8 21 110.4 116,194 3E-8

preg 28 30 25,792 2E-8 26 71.4 63,350 3E-8 22 117.7 116,090 5E-8

2DfootingUB

lin 23 21.1 18,859 7E-9 22 49 44,888 8E-9 19 84.5 85,687 7E-9

reg 24 22 18,859 7E-9 23 50.7 44,888 8E-9 19 84 85,687 8E-9

preg 23 21 18,333 8E-9 22 49.6 45,089 8E-9 18 82.2 86,104 8E-9

2DtunnelLB

lin 36 14.5 8,765 9E-9 41 39 20,923 8E-9 41 73.8 38,947 8E-9

reg 36 13.6 8,765 2E-7 33 30.1 20,923 2E-6 31 52.8 38,947 6E-5

preg 42 14.2 7,859 9E-8 39 32.3 19,463 2E-7 33 53.3 36,573 3E-7

2DtunnelUB

lin 23 9.7 7,018 6E-9 22 21.8 16,556 9E-9 22 39.9 30,414 7E-9

reg 24 9.2 7,018 7E-9 19 17.6 16,556 1E-7 25 41.7 30,414 6E-9

preg 19 5.6 4,595 6E-9 18 13 11,482 8E-9 18 24.5 21,637 6E-9

3DsqrexcLB

lin 19 28 29,638 6E-9 20 226.5 148,896 9E-9 24 657.2 297,683 8E-9

reg 20 29.4 29,638 1E-8 1 16.6 148,896 1E+0 1 38.1 297,683 1E+0

preg 17 19.9 24,149 7E-9 17 164.1 126,627 9E-9 21 506.8 267,285 1E-8

3DsqrexcUB

lin 22 32.7 26,818 9E-9 22 258.8 139,726 7E-9 23 1332.3 444,359 7E-9

reg 24 34.4 26,818 5E-9 32 358.1 139,726 1E-7 61 3427.8 444,359 5E-6

preg 19 18.4 18,521 4E-9 19 158.7 100,836 5E-9 18 787.5 339,284 8E-9

3DsqrexcUB2

lin 45 45.4 16,374 6E-9 61 414.8 83,756 5E-8 61 1942.3 270,925 9E-8

reg 30 28.5 16,374 2E-7 30 199.4 83,756 2E-7 30 935.7 270,925 1E-7

preg 17 9.3 7,932 9E-9 16 55.6 42,613 6E-9 16 247.9 139,934 6E-9

3DsqrfootLB

lin 22 34.9 31,096 8E-9 26 182.3 96,346 3E-9 24 1636 503,501 1E-8

reg 20 31.7 31,096 9E-9 22 154.2 96,346 6E-9 24 1632.4 503,501 9E-9

preg 20 29.7 29,161 1E-8 24 174.9 95,396 4E-9 24 1588.3 485,720 6E-9

3DsqrfootUB

lin 22 32.3 26,597 6E-9 23 153.1 85,656 5E-9 25 1721.1 467,076 6E-9

reg 19 27.7 26,597 6E-9 20 132.3 85,656 3E-9 22 1521.6 467,076 4E-9

preg 19 21.1 20,768 3E-9 19 92.7 67,046 8E-9 21 1113.6 383,195 6E-9

3DsqrfootUB2

lin 24 19 11,543 7E-9 25 71.1 36,142 8E-9 25 598.9 192,568 6E-9

reg 19 14.5 11,543 4E-9 19 53.1 36,142 6E-9 19 451.4 192,568 3E-9

preg 19 11.2 8,930 6E-9 19 43.7 30,064 8E-9 19 378.7 168,067 5E-9

3DtunheadLB

lin 15 32.4 45,049 6E-5 49 482.3 140,128 2E-5 18 1617.7 733,578 3E-4

reg 1 3.8 45,049 1E+0 1 14.1 140,128 1E+0 1 114.5 735,899 1E+0

preg 22 48.3 43,493 6E-9 34 321 135,606 9E-9 25 2366.7 720,932 6E-9

3DtunheadUB
lin 30 63.5 38,770 9E-9 31 293.4 123,914 1E-8 35 3249.8 673,234 2E-8
reg 29 60.7 38,770 9E-9 22 198.2 123,914 1E-5 32 3056.8 673,234 8E-9

preg 20 32.9 31,340 7E-9 19 146 106,303 9E-9 17 1349.7 590,632 5E-9

127

Figure 35. Performance profile of IPM runtime with and without presolve.

3.4.5Improvement summary
The preceding sections make it clear that there is enormous benefit to be gained through

using different orderings and solvers, appropriately dealing with free variables, and

presolving the problem. The improved IPM implementation with the supernodal

Cholesky is subsequently referred to as Mixup8.

On the small problems alone, a 2 × speedup has been achieved overall from 525s with

Mix8 to 262s with the ND ordering, supernodal Cholesky, and presolve. This was more

pronounced on the medium problems, where the total solve time was reduced from

23,275s to 1323s, a 17.5× improvement, as well as solving 3DtunheadLB to a

satisfactory tolerance. Note that the bulk of the time in the medium test set was spent by

Mix8 in 3DsqrexcUB2, 15,941s. Without the 3DsqrexcUB2 and 3DtunheadLB

problems, the improvement is from 7264s to 946s, or 7.7 × faster.

The improved performance is now comparable to the better of the two commercial

solvers tested, MOSEK. Figure 36 shows that the iteration counts are still slightly above

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

No presolve (Linear)

No presolve (Regularised)

With presolve (Regularised)

128

that of MOSEK whose average of 18.8 iterations per problem on the large set is just over

two iterations better than that of Mixup8 with 21.0 iterations per problem, although the

average is slightly distorted with 2DtunnelLBL taking a substantially greater number of

iterations to converge. The complete results are shown in Table 13. The generally

greater number of iterations also results in solutions with smaller infeasibilities, and yet

is still completed in less time. The total solution time on the large problem set is shown

in Figure 37. Both solvers converge to required tolerances or halt satisfactorily close to

convergence except for MOSEK on the lower bound tunnel heading. Table 14 shows the

total improvement over MOSEK on the entire test set, with a 1.7 × improvement on the

large problem set, and the performance profile in Figure 38 shows the superiority of the

improved implementation over MOSEK. These results show that there is benefit in

developing a solver to ensure that the problems are solved with the greatest efficiency

yet while the improvements have provided the capability to solve the test problems

faster than MOSEK, there is still a distinct difference between the two-dimensional and

three-dimensional problems.

Figure 36. Comparison of the IPM iteration count between MOSEK and Mixup8.

0
5

10
15
20
25
30
35

It
er

at
io

ns

Problem

mixup8

mosek

129

Figure 37. Comparison of the total solution time on the large problem set between
MOSEK and the presolved IPM with a supernodal solver using a nested dissection

ordering.

Table 13. Performance results compared with MOSEK.

 S M L
Problem Method nit tT ϕ nit tT ϕ nit tT ϕ

2DfootingLB
mosek 25 41.2 6E-09 20 90.0 8E-09 16 148.3 8E-09

mixup8 28 30.0 2E-08 26 71.4 3E-08 22 117.7 5E-08

2DfootingUB
mosek 20 26.4 7E-09 20 62.3 5E-09 17 108.3 6E-09

mixup8 23 21.0 8E-09 22 49.6 8E-09 18 82.2 8E-09

2DtunnelLB
mosek 19 14.5 5E-08 16 33.3 4E-08 15 57.8 5E-08

mixup8 42 14.2 9E-08 39 32.3 2E-07 33 53.3 3E-07

2DtunnelUB
mosek 17 9.5 4E-08 15 22.5 2E-08 15 44.8 4E-08

mixup8 19 5.6 6E-09 18 13.0 8E-09 18 24.5 6E-09

3DsqrexcLB
mosek 17 29.3 3E-08 16 245.8 3E-08 20 785.3 3E-08

mixup8 17 19.9 7E-09 17 164.1 9E-09 21 506.8 1E-08

3DsqrexcUB
mosek 19 25.5 4E-08 18 197.8 3E-08 17 1108.8 4E-08

mixup8 19 18.4 4E-09 19 158.7 5E-09 18 787.5 8E-09

3DsqrexcUB2
mosek 26 19.1 2E-07 23 110.4 1E-07 24 523.2 2E-07

mixup8 17 9.3 9E-09 16 55.6 6E-09 16 247.9 6E-09

3DsqrfootLB
mosek 21 78.2 2E-08 21 375.3 3E-08 20 3432.3 3E-08

mixup8 20 29.7 1E-08 24 174.9 4E-09 24 1588.3 6E-09

3DsqrfootUB
mosek 18 29.1 2E-08 21 179.2 2E-08 23 2030.6 3E-08

mixup8 19 21.1 3E-09 19 92.7 8E-09 21 1113.6 6E-09

3DsqrfootUB2
mosek 19 15.0 3E-08 19 60.7 3E-08 18 556.1 3E-08

mixup8 19 11.2 6E-09 19 43.7 8E-09 19 378.7 5E-09

3DtunheadLB
mosek 24 88.3 2E-05 28 414.5 2E-06 22 3482.4 1E-05

mixup8 22 48.3 6E-09 34 321.0 9E-09 25 2366.7 6E-09

3DtunheadUB
mosek 20 46.1 4E-08 20 217.1 3E-08 19 2363.7 3E-08
mixup8 20 32.9 7E-09 19 146.0 9E-09 17 1349.7 5E-09

0
500

1,000
1,500
2,000
2,500
3,000
3,500

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

mixup8

mosek

130

Table 14. Total test set runtime.

 mosek mixup8 mosek/mixup8
Small 422.2 261.6 1.6

Medium 2,008.9 1,323.1 1.5
Large 14,641.6 8,616.8 1.7

Figure 38. Performance profile of runtime by IPM solver with MOSEK and the improved

implementation.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1 1.5 2 2.5 3

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

mosek

mixup8

131

Chapter 4 Iterative solver approaches

4.1 Solving the normal equations
Because of the higher sensitivity to the problem and solution method parameters of

iterative solvers compared with direct methods, it is expected that significant variation

will be seen across the range of options. For this reason, it is important to systematically

determine the parameters that lead to the most robust and efficient solution method.

Among the options available, the choices may be split into three areas: options at the

optimisation problem formulation and IPM level; preconditioning options; and choices

around iterative solver parameters and methods.

Questions faced in formulating and solving the optimisation problem that are likely to

affect the system defining the search direction include:

• What effect does the use of a presolve phase to exploit any opportunities to

eliminate fixed and free variables have on the iterative solver’s performance?

• Does the way in which remaining free variables are treated have an impact?

• What effect does the step length relaxation factor, γ , have on the iterative

solver’s performance?

• In choosing among the available preconditioning methods, the main questions

include:

• How much variation is there between the different styles of preconditioner?

• How sensitive are the preconditioners to parameter choices, and what parameters

are optimal?

• Do matrix permutations make a difference and which permutations are the most

beneficial?

• For the actual iterative solvers, the following questions need to be considered:

• Is there a difference between the available iterative solvers?

132

• What tolerance on the residual norm is sufficient in solving each system, and

should this tolerance be an absolute tolerance or and adaptive tolerance,

changing as the IPM approaches a solution?

An understanding of which choices or range of choices provide robust and efficient

methods is sought. This is achieved in the following by first answering questions

regarding the iterative solvers and then testing a range of preconditioning and ordering

options before considering choices at the problem formulation and IPM level. This

approach enables the number of possible permutations to be significantly reduced while

indicating which choices are most beneficial.

4.1.1 Test problems
In order to focus more specifically on the performance of the preconditioner and

iterative solver, individual systems have been extracted from the IPM using a direct

solver. For each one of the small problems, three systems will be considered: the first

system, the first system in which 410pρ −≤ and 410µ −≤ , and the first system

encountered when 810pρ −≤ and 710µ −≤ . Note that these problems were solved using

the supernodal Cholesky with METIS ordering, step length relaxation factor of 0.95, no

free variables were eliminated, no fixed variables or dense columns were exploited, and

each free variable was considered as two linear variables. The number of non-zeros and

order of the Schur complement system are shown, along with an upper bound on the

forward error from MA57 [214] and MATLAB condition estimate of each system in Table

15. The same details are provided for the augmented equations in Table 16. The rank

deficiency is as reported by MA57.

As reported in Table 15 and Table 16, the conditioning of the linear system deteriorates

in almost every problem the closer to convergence the IPM. The condition numbers on

the third system for each problem indicate severely ill-conditioned matrices, in

particular, the lower bound systems. Furthermore, it would not be unexpected for a

direct solver to have difficulty in computing a stable factor that allows a relatively

accurate solution to be obtained, with an upper bound on the forward error in many

cases greater than 1.0. This difficulty was observed in Chapter 3 whereby optimisation

packages considered robust and mature struggled to achieve convergence.

133

Table 15. Schur complement equation conditioning reported by MA57 and MATLAB.

Problem Iteration 1ω 2ω
1ωκ

2ωκ UB on Forward
error

Rank
deficiency

MATLAB condition
estimate

2DfootingLBS
1 3E-16 0E+00 2E+09 0E+00 6E-07 0 4E+10
5 3E-16 0E+00 1E+10 0E+00 4E-06 0 1E+11

26 7E-16 2E-23 2E+17 1E+14 1E+02 0 2E+18

2DfootingUBS
1 4E-16 0E+00 1E+08 0E+00 5E-08 0 2E+07
7 3E-16 0E+00 2E+10 0E+00 5E-06 0 3E+08

23 4E-16 1E-23 9E+16 1E+09 3E+01 0 5E+13

2DtunnelLBS
1 3E-16 0E+00 2E+07 0E+00 6E-09 0 3E+07
7 3E-16 0E+00 3E+09 0E+00 8E-07 0 3E+08

35 3E-16 9E-24 6E+15 5E+12 2E+00 0 9E+15

2DtunnelUBS
1 3E-16 0E+00 1E+07 0E+00 4E-09 0 2E+07
8 3E-16 0E+00 8E+09 0E+00 3E-06 0 2E+08

22 4E-16 1E-23 5E+15 4E+10 2E+00 0 3E+12

3DsqrexcLBS
1 4E-16 0E+00 8E+08 0E+00 3E-07 0 1E+08
9 4E-16 5E-24 4E+12 4E+04 1E-03 0 2E+10

16 4E-16 9E-24 4E+16 3E+09 1E+01 0 1E+13

3DsqrexcUBS
1 5E-16 1E-23 2E+10 5E+02 1E-05 0 7E+08

10 5E-16 9E-24 6E+13 8E+05 3E-02 0 3E+10
19 5E-16 1E-23 3E+18 5E+10 2E+03 0 7E+13

3DsqrexcUB2S
1 6E-16 0E+00 3E+06 0E+00 2E-09 0 4E+06
8 6E-16 0E+00 2E+10 0E+00 1E-05 0 3E+08

38 7E-16 7E-24 3E+15 4E+08 2E+00 0 7E+12

3DsqrfootLBS
1 2E-16 2E-28 3E+16 5E+06 5E+00 0 1E+17

11 3E-16 6E-28 3E+18 6E+08 8E+02 0 1E+19
19 1E-15 3E-19 1E+18 4E+12 1E+03 0 7E+19

3DsqrfootUBS
1 3E-16 0E+00 5E+05 0E+00 2E-10 0 1E+04

12 4E-16 0E+00 3E+07 0E+00 1E-08 0 5E+06
20 5E-16 6E-24 2E+09 3E+05 1E-06 0 2E+10

3DsqrfootUB2S
1 3E-16 0E+00 9E+04 0E+00 3E-11 0 5E+03

11 5E-16 0E+00 1E+06 0E+00 5E-10 0 2E+06
21 5E-16 6E-25 4E+08 4E+00 2E-07 0 3E+10

3DtunheadLBS
1 8E-14 6E-19 1E+19 2E+14 1E+06 0 6E+18

12 2E-14 2E-18 3E+18 2E+15 6E+04 0 6E+30
21 6E-14 2E-19 3E+17 4E+15 2E+04 0 2E+28

3DtunheadUBS
1 4E-16 0E+00 3E+06 0E+00 1E-09 0 2E+06

13 5E-16 1E-23 2E+11 1E+03 1E-04 0 1E+09
25 5E-16 2E-23 1E+16 1E+10 5E+00 0 1E+13

4.1.2 Choices related to the iterative solver

4.1.2.1 Solver parameters
The two parameters that are generally required to be passed to an iterative solver are the

maximum number of iterations and the convergence tolerance. Obviously, only one of

these two parameters will actually be used to terminate an iterative solver (except in the

rare circumstance in which a method achieves convergence on the final iteration,

although it may be argued that the method will actually only terminate because it

converges or because it has reached the maximum number of iterations, but not both).

134

The convergence tolerance indicates the quality of the solution required by the

application, while the maximum number of iterations indicates the maximum amount of

work permissible to obtain the solution. In this case, we need the convergence threshold

to ensure that sufficient progress will be made towards a solution of the optimisation

problem, including reduction, or at least maintenance, of the primal and dual

infeasibilities. The maximum number of iterations, however, must allow the solver to

converge, if possible, while cutting off the solver in cases where it appears unlikely that

the method will converge in a reasonable amount of time.

Table 16. Augmented equation conditioning as reported by MA57.
Problem Iteration w1 w2 Kw1 Kw2 UB on forward error Rank deficiency

2DfootingLBS

1 3E-16 2E-23 3E+05 2E+06 9E-11 0
5 4E-16 1E-23 2E+06 3E-02 7E-10 0
26 3E-16 5E-23 1E+05 8E+08 3E-11 0

2DfootingUBS
1 4E-16 2E-23 1E+04 2E+00 4E-12 0
7 3E-16 0E+00 2E+05 6E+00 6E-11 0
23 3E-16 6E-23 3E+07 3E+09 1E-08 0

2DtunnelLBS
1 3E-16 0E+00 3E+03 0E+00 1E-12 0
7 3E-16 0E+00 4E+04 0E+00 1E-11 0
35 3E-16 2E-23 1E+08 3E+08 5E-08 0

2DtunnelUBS
1 3E-16 6E-24 8E+03 1E+00 3E-12 0
8 3E-16 0E+00 1E+05 0E+00 3E-11 0
22 4E-16 2E-23 1E+07 1E+09 4E-09 0

3DsqrexcLBS
1 3E-16 2E-23 2E+05 8E+05 5E-11 0
9 3E-16 0E+00 1E+06 0E+00 4E-10 0
16 3E-16 0E+00 5E+07 0E+00 2E-08 0

3DsqrexcUBS
1 4E-16 4E-23 4E+05 3E+07 1E-10 0
10 3E-16 0E+00 3E+07 0E+00 1E-08 0
19 4E-16 3E-23 2E+10 6E+06 7E-06 0

3DsqrexcUB2S
1 4E-16 0E+00 6E+02 0E+00 2E-13 0
8 3E-16 0E+00 2E+04 0E+00 6E-12 0
38 5E-16 2E-23 8E+07 2E+08 4E-08 0

3DsqrfootLBS
1 2E-16 2E-17 6E+01 4E+18 7E+01 11
11 3E-16 3E-15 1E+04 4E+17 1E+03 2
19 3E-16 3E-16 2E+07 9E+17 3E+02 24

3DsqrfootUBS
1 3E-16 0E+00 1E+04 0E+00 4E-12 0
12 3E-16 0E+00 3E+03 0E+00 9E-13 0
20 3E-16 2E-23 9E+05 6E+08 3E-10 0

3DsqrfootUB2S
1 4E-16 0E+00 4E+03 0E+00 2E-12 0
11 3E-16 0E+00 6E+02 0E+00 2E-13 0
21 3E-16 1E-23 1E+03 5E+07 4E-13 0

3DtunheadLBS
1 3E-15 7E-17 5E+01 6E+18 4E+02 6
12 4E-15 6E-14 4E+03 4E+17 3E+04 2
21 7E-16 2E-14 6E+05 4E+16 6E+02 4

3DtunheadUBS
1 3E-16 8E-24 1E+03 2E+00 4E-13 0
13 3E-16 0E+00 8E+04 0E+00 3E-11 0
25 3E-16 3E-23 8E+07 8E+07 3E-08 0

135

 In the majority of the simulations to follow, an absolute convergence tolerance of
81 10−× is used with a maximum number of iterations of 20,000. Such a convergence

tolerance is necessary for the later iterations in the IPM to ensure that the primal and

dual infeasibility is not increased preventing convergence.

4.1.3 Preconditioning the normal equations

4.1.3.1 Comparing the symmetric Krylov subspace solvers
When using a diagonal preconditioner, it is simple to explicitly precondition the linear

system before passing it to the Krylov solver. This is achieved by taking the inverse of

the square root of each diagonal entry, and performing row-scaling and column-scaling

of the coefficient matrix such that the diagonal entries are one. Note that this affects

both the solution vector and the right-hand-side. The approach is computed three steps:

1 2 1 2

1 2

1 2

With , solve :

Compute
Solve
Compute

ii iid a
− −

−

−

= =

=

=

=

Ax b

A D AD
Az D b

x D z

In the case of the conjugate gradient solver, this saves n multiplications per iteration

(replacing the preconditioner step) and a vector update. It also reduces the storage

requirements by a vector of length n . This scaling (resulting in unit values on the

diagonal) maintains an approximately equal number of non-zeros in the incomplete

factorisations as the IPM converges to a solution; without this scaling, the large number

of small eigenvalues in the NT scaling matrix lead to many very large entries in the

Schur complement system that do not get dropped in an incomplete-style

preconditioner, leading to significantly increasing factorisation sizes in the latter

iterations of the IPM. Interestingly, this approach converges in fewer iterations than

when using the diagonal preconditioner at each iteration of a preconditioned Krylov

solver. Thus, the following results for PCG, MINRES, and SymQMR are

unpreconditioned algorithms with explicit preconditioning of the coefficient matrix

before being passed to the Krylov solver.

4.1.3.2 The effect of matrix permutations
For direct methods, a sparsity-preserving ordering can have a significant impact on the

relative performance of the method employed. This is because a poor ordering is likely

136

to result in many more non-zero entries in the factor as is clear from the comparison of

available solvers in Section 3.4.2. In the case of incomplete factorisations, however, the

effect of any reordering used may be much more subtle given that the quality of the

incomplete factorisation may not necessarily depend upon a good sparsity-preserving

ordering.

The tests performed here use an absolute convergence tolerance in the residual norm of
810− with the PCG solver and the Ajiz-Jennings RIC1 incomplete factorisation as a

preconditioner with a drop tolerance of 210− and 410− relative to the column diagonal

entry. The four permutations compared are the reverse Cuthill-McKee (RCM) ordering,

Sloan’s profile reducing ordering, approximate minimum degree (AMD) ordering, and a

nested dissection (ND) ordering. The AMD and ND are the same as those tested for the

direct methods in Section 3.4.2; HSL’s MC47 AMD and the METIS ND routines. The

RCM implementation is that contained in SPARSEPAK [72], [215], while the Sloan

ordering is the HSL routine MC40 [216]. Both of these codes use pseudo-peripheral

nodes [72], instead of a “node which might be a node of minimum degree” as suggested

for the original Cuthill-McKee ordering [117], as the starting node for each connected

component in the graph of the matrix, but whereas RCM was designed to minimise the

bandwidth of positive-definite finite element matrices, the Sloan ordering sought to

minimise their profile.

As stated above, the ordering need only be constructed once for each problem and so

generally has a negligible impact on the overall performance in solving the problem.

For completeness, however, the ordering construction times are included here in Table

17. As expected, the RCM ordering is the fastest to construct and the nested dissection

ordering the slowest for every problem in the small test set, the only exception being

2DfootingLBS, in which Sloan’s ordering is considerably slower than all the other

methods. Interestingly, the AMD ordering is no more than double the quick

construction time of RCM, while Sloan’s ordering falls in between the AMD and ND

method times.

As can be seen in Table 18, with a drop threshold of 210τ −= the number of non-zeros

in the factor is quite similar across the different orderings, with the density, on average,

increasing from the RCM ordering, the Sloan ordering, to the nested dissection, and

137

then the approximate minimum degree. The Sloan ordering is quite inconsistent, with

15 systems of the 36 in which it has fewer non-zeros than RCM, but then has over two

and a half times more entries on some other systems. For the systems considered here,

the factorisation with the RCM ordering had between approximately 0.5× to 2 × the

non-zeros in the coefficient matrix.

Table 17. Schur complement ordering time. These times are taken from the analysis of
each problem with 210τ −= .

Problem RCM Sloan ND AMD
2DfootingLBS 0.08 0.39 2.03 0.11
2DfootingUBS 0.05 0.23 1.33 0.07
2DtunnelLBS 0.03 0.12 1.03 0.05
2DtunnelUBS 0.03 0.11 0.71 0.04
3DsqrexcLBS 0.08 2.10 1.27 0.10
3DsqrexcUBS 0.05 0.53 1.60 0.08

3DsqrexcUB2S 0.05 0.80 1.32 0.13
3DsqrfootLBS 0.06 0.46 0.79 0.08
3DsqrfootUBS 0.03 0.25 0.73 0.04

3DsqrfootUB2S 0.04 0.25 0.59 0.07
3DtunheadLBS 0.09 1.01 1.28 0.12
3DtunheadUBS 0.06 0.58 1.19 0.10

The number of iterations required to solve each system with the PCG solver is shown in

Table 19. On average, the RCM ordering leads to the quickest preconditioner

construction times, followed by the ND and then the AMD orderings, with the Sloan

ordering suffering from considerable variance in the performance from on par with the

RCM ordering to around 5× slower. The number of iterations required to solve the

systems, however, is almost the opposite of this situation.

The number of iterations spent before achieving the convergence criterion
8

2
10 ε−− ≤ =b Ax (on the diagonally scaled system) is shown in Table 20. The

maximum number of iterations was set at 20,000 , indicating that many of the solution

attempts failed to achieve convergence. This was especially so for the last system tested

in each problem, where only the two upper bounds on the square footing problem saw

the solver reach convergence and only with the ND and AMD orderings. Interestingly,

none of the approaches converged for any of the 3DtunheadLBS systems. This is likely

to be due to the near rank-deficiency of the constraint matrix, which caused problems

for standard direct Cholesky and multifrontal TLDL factorisations. For the majority of

the middle systems in each problem, the AMD ordering often led to the most effective

138

preconditioner, often followed by the ND ordering. The RCM and Sloan orderings

varied from competitive up to 6 × worse than the AMD/ND-based preconditioners on

some of the lower bound problems. The iteration count approximately corresponds to

the time spent in the solver, with per iteration time generally similar across the

compared approaches. The time per 100 iterations is shown in Figure 39 and is fairly

consistent across the orderings. The performance profile of iteration counts is provided

in Figure 40, and shows the AMD ordering to be the most effective ordering when used

with RIC1. It should be noted that the performance profile of the iteration count is very

similar to the efficiency profile.

Table 18. Non-zeros in the RIC1 factorisation with 210τ −= .
Problem Iteration RCM Sloan ND AMD

2DfootingLBS

1 5,351,560 5,021,559 7,232,403 7,332,105

5 5,344,679 5,097,573 7,390,588 7,497,593

26 6,093,082 5,632,803 7,947,492 8,712,208

2DfootingUBS

1 3,086,158 3,514,126 4,473,881 4,641,495

7 3,091,083 3,664,354 4,914,935 5,208,697

23 3,203,845 3,798,060 5,756,218 7,175,940

2DtunnelLBS

1 1,615,035 1,578,850 2,100,652 2,055,544

7 2,081,038 1,961,639 2,811,970 2,846,691

35 2,225,347 2,107,063 2,974,596 3,273,011

2DtunnelUBS

1 1,114,250 1,315,277 1,539,955 1,541,035

8 1,561,960 3,977,735 2,097,501 2,222,921

22 1,582,770 4,145,997 2,222,805 2,531,137

3DsqrexcLBS

1 2,382,344 2,218,662 2,796,623 2,912,654

9 3,359,524 3,012,265 3,767,826 4,055,837

16 3,341,677 3,008,978 3,742,613 4,051,321

3DsqrexcUBS

1 1,157,530 1,188,779 1,389,075 1,434,230

10 1,674,244 2,497,296 2,163,265 2,331,207

19 1,708,513 2,601,577 2,254,724 2,478,762

3DsqrexcUB2S

1 931,614 975,751 956,892 959,317

8 1,786,814 1,837,004 1,699,006 1,744,273

38 1,914,976 1,938,824 1,807,734 1,923,425

3DsqrfootLBS

1 2,274,027 2,177,695 2,814,157 2,918,339

11 2,768,058 2,686,452 3,464,683 3,623,474

19 2,789,795 2,713,795 3,518,760 3,712,695

3DsqrfootUBS

1 1,058,662 1,141,424 1,334,937 1,391,460

12 1,452,138 2,107,675 1,754,673 1,839,161

20 1,478,222 2,238,431 1,817,334 1,933,840

3DsqrfootUB2S

1 968,700 882,465 988,047 989,937

11 1,681,667 1,439,689 1,549,504 1,562,729

21 1,742,187 1,462,455 1,571,703 1,589,830

3DtunheadLBS

1 4,096,957 6,471,163 4,852,909 4,909,300

12 4,853,125 10,167,924 6,040,053 6,485,309

21 4,986,376 11,605,757 6,148,181 6,721,038

3DtunheadUBS
1 1,904,763 2,300,756 2,217,165 2,289,268

13 2,230,723 3,704,995 2,635,020 2,776,475
25 2,302,339 4,349,070 2,886,347 3,189,039

139

Table 19. RIC1 preconditioner construction time with 210τ −= .
Problem Iteration RCM Sloan ND AMD

2DfootingLBS

1 0.38 0.40 0.52 0.60

5 0.38 0.40 0.53 0.59

26 0.46 0.46 0.59 0.84

2DfootingUBS

1 0.20 0.20 0.31 0.35

7 0.20 0.21 0.33 0.40

23 0.21 0.23 0.40 0.62

2DtunnelLBS

1 0.12 0.13 0.16 0.17

7 0.14 0.14 0.20 0.22

35 0.16 0.16 0.21 0.28

2DtunnelUBS

1 0.09 0.10 0.12 0.13

8 0.10 0.46 0.14 0.18

22 0.10 0.49 0.15 0.20

3DsqrexcLBS

1 0.29 0.22 0.30 0.35

9 0.41 0.33 0.42 0.53

16 0.39 0.32 0.42 0.54

3DsqrexcUBS

1 0.13 0.16 0.16 0.19

10 0.17 0.46 0.23 0.29

19 0.17 0.48 0.24 0.31

3DsqrexcUB2S

1 0.16 0.24 0.17 0.17

8 0.28 0.53 0.24 0.26

38 0.42 0.60 0.25 0.29

3DsqrfootLBS

1 0.34 0.23 0.51 0.34

11 0.28 0.26 0.36 0.42

19 0.29 0.27 0.37 0.43

3DsqrfootUBS

1 0.12 0.13 0.16 0.18

12 0.14 0.31 0.18 0.21

20 0.14 0.33 0.18 0.23

3DsqrfootUB2S

1 0.17 0.15 0.17 0.16

11 0.26 0.18 0.19 0.20

21 0.27 0.18 0.20 0.21

3DtunheadLBS

1 0.58 0.93 0.69 0.58

12 0.51 1.56 0.65 0.78

21 0.53 1.84 0.66 0.89

3DtunheadUBS
1 0.19 0.34 0.23 0.29

13 0.21 0.61 0.25 0.33
25 0.21 0.70 0.28 0.39

The behaviour seen for the low-fill factorisations is quite different to the higher-fill

preconditioners. Reducing the drop tolerance to 410τ −= significantly increases the

number of fill-in entries that are kept in the factorisation process and consequently

significantly increases the time required to construct the preconditioner. This is usually

offset by a reduction in the number of iterations required to achieve convergence in the

solve phase. The number of non-zeros in the factorisation with the reduced drop

tolerance is shown in Table 21. For the second two systems in each problem, the RIC1

factorisation with the AMD ordering achieves up to a 50% reduction in the size of the

140

factor over the MOSEK Cholesky factorisation. Many problems see approximately the

same number of entries comparing the direct method and the incomplete factorisation,

and for the 3DsqrexcUB2 systems, the incomplete factorisation with all orderings

significantly underperforms the direct method with 25% to 14 × more entries than the

seven million entries in MOSEK’s full factorisation. This is possibly because of the

significant savings achieved by eliminating free variables, avoiding dense columns, and

exploiting fixed variables.

The much greater size of the factors also incurs a significantly greater construction time

cost, as can be seen in Table 22. Consistent with the amount of fill-in noted previously,

these times are not competitive with the factorisation times of the direct methods in the

high-performance conic program software packages.

141

Table 20. Iterations required with RIC1 preconditioned CG (210τ −= and 810ε −=). †
indicates convergence did not occur within the maximum 20,000 iterations.

Problem Iteration RCM Sloan ND AMD

2DfootingLBS

1 † † 17,578 15,592

5 † † 13,415 15,347

26 † † † †

2DfootingUBS

1 1,014 640 792 755

7 1,134 721 871 866

23 † † † †

2DtunnelLBS

1 2,329 2,058 1,005 520

7 3,596 3,139 1,513 1,001

35 † † † †

2DtunnelUBS

1 346 389 345 304

8 701 1,520 734 528

22 † † † †

3DsqrexcLBS

1 3,044 1,563 1,298 1,295

9 † 8,811 6,317 3,258

16 † † † †

3DsqrexcUBS

1 1,520 2,839 1,526 1,375

10 3,463 10,042 3,396 2,773

19 † † † †

3DsqrexcUB2S

1 242 804 294 147

8 1,335 3,724 1,575 946

38 † † † †

3DsqrfootLBS

1 240 197 173 160

11 † † † †

19 † † † †

3DsqrfootUBS

1 79 88 87 84

12 440 792 491 402

20 15,688 17,793 14,081

3DsqrfootUB2S

1 61 58 56 52

11 595 439 385 306

21 † 18,202 17,768 14,079

3DtunheadLBS

1 † † † †

12 † † † †

21 † † † †

3DtunheadUBS
1 202 392 184 153

13 2,090 5,766 1,685 990
25 † † † †

142

Figure 39. Time per 100 iterations with RIC1 (210τ −=) preconditioned CG.

Figure 40. Performance profile of iteration counts by ordering method with RIC (with

210τ −=).

0

1

1

2

2

3

3

4

4

T
im

e
pe

r
10

0
ite

ra
tio

ns
 (s

)

Problem

RCM

Sloan

ND

AMD

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

AMD

METIS

RCM

Sloan

143

Table 21. Non-zeros in the RIC1 factorisation with 410τ −= .
Problem Iteration RCM Sloan ND AMD

2DfootingLBS

1 33,692,140 27,168,805 15,655,565 18,257,763

5 33,762,490 28,453,869 16,054,870 19,015,901

26 48,636,953 44,601,271 17,365,679 22,775,499

2DfootingUBS

1 15,175,693 13,007,502 10,398,601 12,097,548

7 15,309,907 13,440,530 11,156,000 13,717,719

23 20,170,032 17,654,841 11,975,128 16,737,184

2DtunnelLBS

1 8,840,380 7,596,094 4,461,745 4,881,983

7 12,609,642 10,155,077 5,154,352 5,901,792

35 16,149,373 13,741,086 5,159,112 6,197,963

2DtunnelUBS

1 5,343,264 4,377,259 3,397,486 3,454,875

8 7,174,963 76,738,405 3,972,181 4,155,104

22 8,146,368 79,522,252 3,953,276 4,247,076

3DsqrexcLBS

1 24,669,271 18,630,509 13,374,402 12,500,731

9 46,325,896 34,091,946 17,222,833 22,932,096

16 46,037,355 34,751,389 16,462,910 22,486,943

3DsqrexcUBS

1 9,214,213 23,161,388 8,405,736 7,889,490

10 15,749,067 104,673,027 12,102,548 14,221,679

19 17,138,959 113,094,148 12,135,964 15,586,904

3DsqrexcUB2S

1 8,563,275 36,005,597 6,925,040 6,516,542

8 18,062,951 100,841,446 8,871,473 10,543,303

38 18,838,845 98,254,858 8,636,873 11,237,777

3DsqrfootLBS

1 22,880,118 18,211,879 13,843,980 12,185,233

11 28,130,231 23,447,179 16,347,371 15,724,039

19 27,101,576 23,324,930 16,186,892 16,077,724

3DsqrfootUBS

1 8,866,821 9,748,974 8,709,581 8,285,553

12 10,387,000 47,030,545 9,817,532 9,749,364

20 10,275,326 52,277,929 9,663,466 9,829,626

3DsqrfootUB2S

1 6,730,887 6,578,043 4,662,536 4,472,196

11 12,128,029 8,537,004 5,980,154 6,166,816

21 12,807,654 8,781,651 5,884,983 6,307,611

3DtunheadLBS

1 43,217,352 92,280,177 22,985,628 22,626,345

12 57,267,713 213,969,882 27,467,599 30,964,250

21 61,267,081 313,090,153 27,127,675 31,813,138

3DtunheadUBS
1 14,246,984 41,270,583 11,824,650 11,616,517

13 14,884,890 91,538,263 13,533,102 14,119,504
25 15,340,515 123,106,100 15,557,591 18,815,249

144

Table 22. RIC1 preconditioner construction time with 410τ −= .
Problem Iteration RCM Sloan ND AMD

2DfootingLBS

1 4.06 2.95 1.89 2.97

5 4.04 3.24 2.05 3.37

26 6.86 6.40 2.92 6.10

2DfootingUBS

1 1.40 1.05 1.01 1.49

7 1.43 1.12 1.18 2.07

23 2.34 1.81 1.50 4.01

2DtunnelLBS

1 0.87 0.72 0.41 0.57

7 1.27 1.00 0.50 0.78

35 1.97 1.70 0.52 0.90

2DtunnelUBS

1 0.49 0.36 0.30 0.31

8 0.67 48.09 0.35 0.40

22 0.75 53.57 0.35 0.42

3DsqrexcLBS

1 6.73 4.49 4.10 4.85

9 18.86 15.55 7.64 23.37

16 18.96 16.96 7.13 22.37

3DsqrexcUBS

1 1.87 17.28 1.91 1.86

10 4.20 119.60 4.28 8.36

19 4.67 136.60 4.34 10.85

3DsqrexcUB2S

1 2.50 40.26 2.25 2.30

8 7.89 182.00 3.81 6.67

38 8.75 189.10 3.62 7.74

3DsqrfootLBS

1 7.51 3.88 7.52 4.49

11 7.23 5.67 6.75 8.22

19 6.91 5.76 6.76 8.91

3DsqrfootUBS

1 1.70 1.97 2.43 2.26

12 1.85 36.89 3.01 3.09

20 1.83 44.09 2.89 3.16

3DsqrfootUB2S

1 1.84 1.88 1.59 1.51

11 3.40 2.47 2.02 2.36

21 3.81 2.73 2.00 2.52

3DtunheadLBS

1 14.94 61.00 10.63 9.68

12 17.41 309.40 12.10 23.32

21 20.41 765.90 11.92 26.01

3DtunheadUBS
1 2.50 20.67 2.68 2.76

13 2.59 81.90 3.58 4.26
25 2.74 138.40 5.25 9.82

As expected, the number of iterations taken to convergence is greatly reduced by the

much more accurate preconditioner. The iteration counts, again limited to 20,000, are

shown in Table 23. Importantly, more of the systems were solved to tolerance with all

orderings, although some of the lower bound systems were still unable to be solved with

the AMD and ND-based preconditioners which achieved convergence on 30 of the 36

systems tested. The RCM and Sloan orderings are clearly outperformed in their

preconditioning effectiveness as well as the quality of the sparsity-preservation in the

more dense factorisations. The RCM ordering-based preconditioner solved 25 systems,

while the Sloan ordering-based preconditioner solved only 23. In all cases, the

145

factorisation with the AMD ordering outperforms the ND ordering-based factorisation.

This difference was significant for some systems, indicating that the AMD ordering was

unquestionably the most robust choice among the options considered for the systems

tested with the lower drop tolerance. The time per 100 iterations is displayed in Figure

41, showing the effect of the large number of non-zeros in the preconditioner. Similar to

RIC1 with 210τ −= , the performance profile of the iteration counts in Figure 42 shows

AMD to be the ordering with the highest likelihood of providing an ordering to produce

an incomplete factorisation preconditioner among the orderings tested.

These results make it clear that to obtain the search direction with an iterative solver in

the later iterations of the IPM, more accurate preconditioners must be constructed. If

one is to construct these more dense factorisations, then the banded preconditioners are

not suitable, necessitating a choice between the ND and AMD orderings. While the ND

ordering resulted in fewer non-zeros in the factorisation and often faster construction

times, the effectiveness of the preconditioner was clearly inferior to the AMD-based

preconditioner. Following these results, all incomplete Cholesky factorisations in the

study use the AMD ordering.

146

Table 23. Iterations required with RIC1 preconditioned CG (410τ −= and 810ε −=). †
indicates convergence did not occur within the maximum 20,000 iterations.

Problem Iteration RCM Sloan ND AMD

2DfootingLBS

1 9,202 5,942 1,118 412

5 5,535 3,671 828 357

26 † † † †

2DfootingUBS

1 176 143 63 62

7 202 170 74 71

23 † † 11,401 3,708

2DtunnelLBS

1 473 362 88 19

7 750 604 89 19

35 † † † †

2DtunnelUBS

1 67 62 23 17

8 157 388 39 18

22 19,472 † 4,442 1,700

3DsqrexcLBS

1 738 253 102 37

9 4,740 1,382 312 92

16 † † 11,432 3,904

3DsqrexcUBS

1 485 2,656 192 103

10 1,256 7,401 404 256

19 † † 9,707 6,566

3DsqrexcUB2S

1 110 507 46 18

8 500 1,951 111 63

38 † † 6,923 2,526

3DsqrfootLBS

1 47 38 17 13

11 † † 57 39

19 † † † †

3DsqrfootUBS

1 19 22 15 15

12 94 239 52 36

20 3,137 8,473 1,646 869

3DsqrfootUB2S

1 11 13 8 8

11 72 63 20 12

21 2,718 3,400 968 196

3DtunheadLBS

1 † † † †

12 † † † †

21 † † † †

3DtunheadUBS
1 53 170 28 22

13 499 1,958 181 63
25 19,403 20,000 6,825 1,725

147

Figure 41. Time per 100 iterations with RIC1 (410τ −=) preconditioned CG.

Figure 42. Performance profile of iteration counts by ordering method with RIC1 (

410τ −=). Note that the RCM and Sloan ordering profiles extend beyond an Alpha value
of 25 but are not shown.

0

5

10

15

20

25

T
im

e
pe

r
10

0
ite

ra
tio

ns
 (s

)

Problem

RCM

Sloan

ND

AMD

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

AMD

METIS

RCM

Sloan

148

4.1.3.3 Incomplete factorisation comparison
Incomplete Cholesky factorisations are the most common form of preconditioners for

SPD systems [78]. Because of their popularity, many developments have been made

under the incomplete Cholesky umbrella. The variants tested here were a dual-threshold

incomplete Cholesky, ICTP, that controls fill through both a drop tolerance and fill-

control, a robust incomplete Cholesky, RIC1, by Ajiz and Jennings [217] that ensures

the incomplete factor exists for any SPD system, and a second order stabilised

incomplete Cholesky, RIC2S, by Kaporin [218].

In order to allow a direct comparison between the effectiveness of the different

approaches, these three incomplete factorisation methods were all implemented based

on the left-looking Cholesky factorisation described by Davis [85]. These

implementations were then compared against well-known codes from the HSL to

measure their effectiveness against high performance solvers. Because of the difficulty

in factorising the systems which define the search direction in the IPM (see Section

3.4.1 for a discussion on computing the full Cholesky factor), it was essential to use a

diagonal shift framework to ensure that an incomplete factor could be computed. This

and a general outline of the incomplete Cholesky factorisation method used are

described next.

4.1.3.3.1 Implementation of the incomplete factorisations
In order to obtain the most efficient preconditioner construction and iterative solution

process for each linear system, the implementation details of the various incomplete

factorisation algorithms are crucial. The implementation of these algorithms also

provides a more direct comparison between the different approaches, as opposed to

comparing solvers from available libraries. The incomplete factorisation methods

implemented include a conventional incomplete Cholesky factorisation, the Ajiz-

Jennings robust incomplete factorisation [217], and Kaporin’s second-order stabilised

robust incomplete factorisation [218]. Following Benzi and Tůma [219], we label these

methods ICT, RIC1, and RIC2S, respectively. ICT is implemented with fill-control and

threshold dropping, while RIC1 and RIC2S follow the algorithms provided by Kaporin

[218], except that in sparsifying the row accumulator vector in RIC2S, ζ is set to

j i jv d d instead of j jv d (this is a correction, see footnote on p. 392 in [219]).

149

The implementations also compute L one column at a time as opposed to one row at a

time described by Kaporin [218]. All three methods are based on the same column-

oriented left-looking sparse Cholesky factorisation in which the columns of L are

stored in a CSC structure as they are computed using the concepts from Davis’s up-

looking Cholesky factorisation described in Reference [85]. The basic algorithm is

shown below.

() ()
()

()
()
()

, 1, ,

1: 0 ! Initialise header pointers for linked lists
for 1,
 :, ! Scatter the th column of

 ! For each entry in the th row

 do while 0
 ! Column has

i i i i n

n
k n

k k

j k k

j
j

= ∀ =

=

=

=

=

≠

d A

head

v A A

head

() ()
()

 an entry in row
 : , 1: ,

 ! Update linked list for next entry in column

 end do
 ! Perform any dropping, and sort column entries

k
k j k n j

jnext j
j

j jnext

k

= − × +

=

=

v v L L

next

L () ()
() ()
() () ()2

,

 k 1: n, ,

 1: : 1: 1: ,
 ! Update and with first off-diagonal entry in column of
end do

k k

k k k

k n k n k n k
k

=

+ =

+ = + − +

d

L v L

d d L
next head L

Algorithm 1 - Left-looking incomplete Cholesky framework.

A linked list is used to allow the partially computed factor to be accessed by row which

is necessary in the update step. The linked list comprises three n -vectors, only two of

which are shown in the outline above; head holds the head of the linked list and next

points to the next entry in the linked list. The third vector holds a pointer to the location

in the row index and value arrays for L , so that (): ,k n kL may be easily accessed if

the column entries are sorted. This pointer vector is initialised for each column in the

last line before the end of the main loop by checking whether there are any off-diagonal

150

entries in the k th column of L , and, if there is, setting the pointer vector to the location

of the first sub-diagonal in column k in the CSC structure for L , and adding the

column to the head of the linked list for the row containing this entry. Modifying the

linked list is performed similarly after the update by incrementing the pointer vector by

one position to the next entry in the column (the columns are sorted as described next)

and inserting the column at the head of the linked list associated with the row index of

that next entry. For RIC2S, the linked list is used for entries in both L and TR (where
TR is the strictly lower triangular matrix containing the entries discarded after the

factorisation finishes). The column index is simply negated to indicate that the entry in

row k is an entry of TR . The initialisation and update for the linked lists must also

check entries in both L and TR to determine which holds the next off-diagonal entry in

the column.

Because the sparsity pattern is not known beforehand for the incomplete factorisations,

a flag vector is maintained that will have the i th component set to k if ()iv will be

the non-zero entry corresponding to (),i kL . If fill-in is encountered in row i , ()iflag

is set to k and ()iv is initialised. The use of the flag vector avoids checking a floating

point number for equality with zero and any associated duplication of entries which

have cancelled. It also avoids the need to zero out the accumulation vectors after each

column has been computed. The row indices are held in unordered form during the

update, with the threshold dropping being applied after the update and then the column

is sorted in order of increasing row indices using quicksort. If fill-control is being used,

then only the fill-control parameter times the number of non-zero entries in the lower

triangular part of the k th column of A are stored; these entries are found using

quicksplit (described by Saad in his implementation details for ILUT [136]) before

being ordered with quicksort. After the dropping and sorting is performed, the diagonal

entry is first checked for non-positivity. If the entry is no longer positive, the

factorisation halts, and then restarted after performing a diagonal shift so that

(): diagα= +A A A as suggested by Manteuffel [220] or : β= +A A I . In all cases the

second approach with β was found to provide better performance and was used as

follows:

151

1. Set β to zero and attempt to construct the incomplete factor. If successful, exit.

2. If β is zero, then set it to a small value such as 1210− or 1610− , otherwise set β

to its square root.

3. Return to step 1.

This process is modified slightly such that if the incomplete factorisation fails around a

similar pivot in consecutive attempts, then the square root is taken twice, i.e. 4:β β= .

4.1.3.3.2 Incomplete Cholesky
The ICTP preconditioner was tested with a range of drop tolerances from 210τ −= to

410− and a fill control from 20p = to 80. In addition, ICTP was tested without a fill

control. This meant that whenever the factorisation needed more space, it attempted to

allocate memory and transfer the previously computed portion of the preconditioner.

This approach did not fail on any of the problems tested, but is likely to require

modification if the initial allocation is too small when solving very large systems with a

small drop tolerance. The performance profile comparing the parameter settings is

shown in Figure 44.

Clearly, introducing a fill control strongly affects the effectiveness of the

preconditioner. The fill control does significantly impact the preconditioner with
310τ −= until p is reduced to 20, and none of the fill control values has an impact

when 210τ −= . As expected, the use of fill control does not result in an improvement in

any case. Furthermore, it appears that rather than introducing a fill control to reduce the

number of entries in the factorisation one should increase the drop tolerance. For

example, rather than introducing a fill control of 40 to limit the number of entries in the

preconditioner with 410τ −= , increasing 310τ −= will generally result in fewer entries,

faster factorisation time, and a more effective preconditioner, thus dominating the

smaller drop threshold with a fill control.

152

Figure 43. Performance profile of efficiency by ICTP parameter choice.

Figure 44. Performance profile of factor time plus 3× solve time by ICTP parameter

choice.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

ICTP_t1E-4

ICTP_t1E-4_p80

ICTP_t1E-4_p40

ICTP_t1E-4_p20

ICTP_t1E-3

ICTP_t1E-3_p80

ICTP_t1E-3_p40

ICTP_t1E-3_p20

ICTP_t1E-2

ICTP_t1E-2_p80

ICTP_t1E-2_p40

ICTP_t1E-2_p20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

ICTP_t1E-4

ICTP_t1E-4_p80

ICTP_t1E-4_p40

ICTP_t1E-4_p20

ICTP_t1E-3

ICTP_t1E-3_p80

ICTP_t1E-3_p40

ICTP_t1E-3_p20

ICTP_t1E-2

ICTP_t1E-2_p80

ICTP_t1E-2_p40

ICTP_t1E-2_p20

153

The performance profile of efficiency is given in Figure 43 and the runtime in Figure

44, with each preconditioners drop tolerance shown with the prefix t and the fill control

with a prefix p. The figures show that building the preconditioner with 310τ −= leads to

better performance than with either the higher or lower drop tolerance for more than

50% of the problems tested. This suggests that an optimal tradeoff between

preconditioner accuracy and fill-in exists, but that as the IPM approaches a solution it is

likely to be beneficial to reduce the drop tolerance to increase the effectiveness of the

preconditioner.

4.1.3.3.3 Robust incomplete Cholesky
The RIC1 method differs from the ICTP solver in that the drop tolerance of 310− does

not appear to hold any advantage over the lower value of 410− for any of the problems

tested as seen in the performance profile of expected per IPM iteration runtime in Figure

46, which includes three solves and the factorisation. This difference lies in the increase

of the diagonal perturbations as more entries are dropped, reducing the effectiveness of

the preconditioner.

It should be noted that not all of the systems tested required diagonal modifications to

ensure the existence of the incomplete factor, yet the RIC1 solver has no way of

exploiting this. Consequently, the RIC1 solver operates at a significant disadvantage to

the ICTP solver on any system in which the incomplete factor exists without modifying

the diagonal. Furthermore, because RIC1 modifies the diagonal whenever an entry is

dropped, the more entries are dropped the greater the diagonal modifications. This will

result in the larger drop tolerances performing much more poorly on the better-

conditioned systems than would be the case if the impact of these diagonal

modifications could be avoided. To achieve this, it is possible to scale the diagonal

modifications by a fixed factor, ν . By starting with 0ν = and increasing ν whenever

the factorisation fails because of a non-positive pivot (to a maximum of 1), the

preconditioner can avoid reducing the effectiveness of the preconditioner for the better

conditioned systems but avoid failure as the systems become more ill-conditioned. This

approach mirrors the process used with the ICTP solver where instead of factorising A ,

the system ()diagα+A A or β+A I is factorised. This modified version of RIC1 is

labelled nuRIC1.

154

The performance profiles of efficiency and runtime are shown in Figure 45 and Figure

46, where the preconditioner has its drop tolerance appended with a prefix t. These

profiles show that the smaller the drop tolerance, the better the robust incomplete

Cholesky preconditioner performs. This is expected for the RIC1 preconditioner, where

the diagonal modifications are less when fewer entries are dropped. The use of the

relaxation parameter ν clearly improved the efficiency of the preconditioner overall,

but for 410τ −= solved one less of the systems. The greater efficiency of nuRIC1 over

RIC1 did not coincide with a similar difference in the runtime because of the greater

preconditioner construction costs.

Figure 45. Performance profile of efficiency by RIC1 drop tolerance.

4.1.3.3.4 Incomplete Cholesky with second-order corrections
With preconditioner efficiency defined as the iteration count multiplied by the number

of non-zeros in the incomplete factor, the second-order incomplete Cholesky

preconditioner will generally produce highly efficient preconditioners. This does hide,

however, the often large intermediate storage that is necessary to build the

preconditioner. For this reason, no efficiency profiles are shown, just the runtime

profiles without the diagonal modifications with dropped entries in Figure 47 and with

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

RIC1_t1E-4

nuRIC1_t1E-4

RIC1_t1E-3

nuRIC1_t1E-3

RIC1_t1E-2

nuRIC1_t1E-2

155

stabilisation in Figure 48. The two flavours of the preconditioner are labelled RIC2 and

RIC2S for with and without the diagonal perturbations, respectively. Again, the drop

tolerances are shown prefixed with t and the fill control for the second-order update

matrix R is prefixed with r.

Figure 46. Performance profile of factor plus 3× solve time by RIC1 drop tolerance.

 As with ICTP and RIC1, it is clear that the smaller the drop tolerance, the more

effective the preconditioner in terms of both runtime and the number of systems solved.

There appears to be little difference between the two high fill control values of 40p =

and 80 for 310τ −= , but the tighter fill controls adversely impact the preconditioner

quality on a number of the systems. For the largest drop tolerance of 110τ −= , the fill

control makes negligible difference for RIC2. For RIC2S, this effect is apparent for both
110τ −= and 210− .

Comparing the preconditioner with and without stabilisation in Figure 49 gives a clear

indication that the diagonal perturbations for dropped entries in RIC2S makes a

significant improvement over RIC2 for the problems in the test set.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

RIC1_t1E-4

nuRIC1_t1E-4

RIC1_t1E-3

nuRIC1_t1E-3

RIC1_t1E-2

nuRIC1_t1E-2

156

Figure 47. Performance profile of factor plus 3× solve time by RIC2 parameter choice.

4.1.3.3.5 Comparison with available incomplete Cholesky packages
A comparison between these implementations and those from some highly-regarded

libraries was performed. The previously discussed incomplete Cholesky preconditioners

are compared with the incomplete Cholesky factorisations constructed by the MA61 and

MI28 packages in the HSL. HSL’s MA61 is a relatively conventional right-looking

incomplete Cholesky factorisation, while MI28 is a state-of-the-art second-order

stabilised robust incomplete Cholesky implementation similar to the RIC2S

implementation used above. The MA61 and MI28 packages are both available in source

form. MA61 is a right-looking TLDL factorisation. The incomplete factorisation in MI28

is a left-looking Cholesky implementation using linked lists of ancestors for each node

in the elimination tree, and attempts to minimise the diagonal shift parameter, α , that

allows an incomplete factorisation to be computed by increasing/decreasing α and

recomputing the factorisation. While MI28 has many options, the default values for all

parameters except τ , p , and r were used. The second drop threshold for entries

dropped from L and not to be included in R was set at τ . This implementation can

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

RIC2_t0.001_r80

RIC2_t0.001_r40

RIC2_t0.001_r20

RIC2_t0.001_r10

RIC2_t0.01_r80

RIC2_t0.01_r40

RIC2_t0.01_r20

RIC2_t0.01_r10

RIC2_t0.1_r80

RIC2_t0.1_r40

RIC2_t0.1_r20

RIC2_t0.1_r10

157

be expected to achieve very similar performance to the RIC2S implementation

developed here, while MA61 is compared only on the more easily-solved systems as its

diagonal perturbation approach to non-positive pivots is insufficient to effectively

precondition many of the numerically harder systems in the test set. These results are

displayed in Table 24.

Figure 48. Performance profile of factor plus 3× solve time by RIC2S parameter

choice.

On these problems, the ICTP implementation described here dominates MA61 in

factorisation time and solve time, being faster for all but one of the systems

(3DsqrfootUB2_01, with 0.10s and 0.09s being the respective solve times). For the

same drop tolerance, fill-in is roughly the same for the middle IPM iteration systems as

expected, but the first system creates more fill-in with ICTP. Even with greater fill-in,

ICTP is a significantly faster factorisation. Furthermore, for a given drop tolerance,

ICTP builds a very competitive and effective preconditioner as measured by iteration

counts and solve times. For example, solving 3DsqrexcUB2_01 with 310τ −= leads to

approximately the same amount of fill-in between the two methods, but the ICTP

preconditioner takes roughly a quarter of the time to build and requires only 16

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

RIC2_t0.001_r80_s

RIC2_t0.001_r40_s

RIC2_t0.001_r20_s

RIC2_t0.001_r10_s

RIC2_t0.01_r80_s

RIC2_t0.01_r40_s

RIC2_t0.01_r20_s

RIC2_t0.01_r10_s

RIC2_t0.1_r80_s

RIC2_t0.1_r40_s

RIC2_t0.1_r20_s

RIC2_t0.1_r10_s

158

iterations to converge compared with MA61’s 263 iterations. MA61 also has some

unexpectedly large iteration counts for 310τ −= on 3DsqrexcUB2_08 and

3DsqrfootUB_12. Based on these results, MA61 was not considered any further in this

study.

Figure 49. Performance profile of factor plus 3× solve time with RIC2 and RIC2S for

some of the more accurate parameter settings.

MI28 was tested both with and without the no-fill updates from TRR , and the

performance profiles are shown without the updates in Figure 50 and in Figure 51 with

the updates. The figures appear almost identical, and this is confirmed in Figure 52

where 310τ −= with an L fill control of 40 and R fill controls of 40 and 80. The same

behaviour as with the implemented preconditioners exists here, with a reduced drop

tolerance leading to more systems solved in less time.

The top performing parameter settings for ICTP, RIC1, nuRIC1, and RIC2S are

compared with the top performing MI28 preconditioner in Figure 53. The nuRIC1

preconditioner appears to be the best performing approach for 75% of the problems in

the test set. The RIC1 and RIC2S solve more problems than nuRIC1, but at a slight

performance disadvantage. ICTP is clearly not competitive, and the MI28

preconditioner does not perform as well as the other preconditioners tested. Table 25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

RIC1_0.0001

nuRIC1_0.0001

FSAIPACK_AMD_1

FSAIPACK_RCM_2

FSAIPACK_Sloan_2

159

shows the number of non-zeros in the incomplete factorisation, including the

intermediate R entries for the second-order methods. When it converges, ICTP

generally has the lowest non-zero count. Note that the different drop criterion in RIC1

(drop ijv if () ()j j
ij i jv d dτ≤ , where ijv is an entry that is yet to be divided by the

diagonal jd in its column when computing column j) causes it generally to have more

non-zeros than ICTP (drop ijv if ()j
ij jv dτ≤) for the same drop threshold. For most

systems, the RIC1 and nuRIC1 preconditioners with 410τ −= are of similarly size to the

second-order methods with 310τ −= and R containing 40 to 80 entries per column.

Table 24. Comparison of MA61 and ICTP on some upper bound 3D systems. Both
methods are using the same AMD ordering.

System Prec beta p tau Lnz nit ||r|| tfactor tsolve

3DsqrexcUB2_01 ICTP 0 0.001 3,107,095 16 8.187E-09 0.49 0.20
3DsqrexcUB2_01 MA61 8 0.001 3,070,004 263 7.99E-09 1.93 3.19

3DsqrexcUB2_01 ICTP 0 0.0001 6,159,195 7 3.651E-09 1.93 0.14
3DsqrexcUB2_01 MA61 8 0.0001 4,884,377 51 9.45E-09 6.70 0.85

3DsqrexcUB2_08 ICTP 0.001 0.001 4,648,726 262 9.648E-09 1.74 3.87

3DsqrexcUB2_08 MA61 8 0.001 5,029,849 11320 9.811E-09 6.80 186.60
3DsqrexcUB2_08 ICTP 0.001 0.0001 8,866,606 187 9.364E-09 13.35 3.99

3DsqrexcUB2_08 MA61 8 0.0001 9,751,167 189 9.997E-09 31.92 5.02

3DsqrfootUB_01 ICTP 0 0.001 3,629,324 17 8.293E-09 0.44 0.22
3DsqrfootUB_01 MA61 8 0.001 3,334,297 16 4.194E-09 1.93 0.25

3DsqrfootUB_01 ICTP 0 0.0001 7,885,251 7 6.591E-09 1.87 0.17
3DsqrfootUB_01 MA61 8 0.0001 6,052,946 8 4.853E-09 7.12 0.21

3DsqrfootUB_12 ICTP 0.001 0.001 4,231,361 71 6.794E-09 1.16 1.02

3DsqrfootUB_12 MA61 8 0.001 4,412,107 1635 9.945E-09 2.84 31.71
3DsqrfootUB_12 ICTP 0 0.0001 8,833,194 13 3.094E-09 2.22 0.33

3DsqrfootUB_12 MA61 8 0.0001 7,273,197 34 9.635E-09 9.12 0.91

3DsqrfootUB2_01 ICTP 0 0.001 2,306,657 10 1.517E-09 0.36 0.10
3DsqrfootUB2_01 MA61 8 0.001 2,324,502 10 3.123E-09 1.46 0.09

3DsqrfootUB2_01 ICTP 0 0.0001 4,264,378 4 9.746E-09 1.20 0.06
3DsqrfootUB2_01 MA61 8 0.0001 3,610,849 6 1.492E-09 4.41 0.08

3DsqrfootUB2_11 ICTP 0 0.001 3,297,940 25 5.05E-09 0.49 0.29

3DsqrfootUB2_11 MA61 8 0.001 3,523,282 135 8.622E-09 2.19 1.64
3DsqrfootUB2_11 ICTP 0 0.0001 5,560,940 7 9.597E-09 1.65 0.12

3DsqrfootUB2_11 MA61 8 0.0001 5,154,269 12 1.903E-09 7.05 0.20

 There are large discrepancies, however, on 3DsqrexcLB where the second-order

methods have around half the non-zeros of RIC1 and nuRIC1, and on 3DtunheadUB,

where the opposite is the case (although, in both cases, RIC1 and nuRIC1 outperformed

the more sophisticated preconditioners in runtime performance).

160

Figure 50. Performance profile of factor plus 3× solve time with MI28 by parameter

choice.

Figure 51. Performance profile of factor plus 3× solve time with MI28 by parameter

choice with no-fill TRR updates.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

MI28_t0.001_p40_r80

MI28_t0.001_p40_r40

MI28_t0.001_p20_r40

MI28_t0.001_p20_r20

MI28_t0.01_p40_r80

MI28_t0.01_p40_r40

MI28_t0.01_p20_r40

MI28_t0.01_p20_r20

MI28_t0.1_p40_r80

MI28_t0.1_p40_r40

MI28_t0.1_p20_r40

MI28_t0.1_p20_r20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

MI28_t0.001_p40_r80

MI28_t0.001_p40_r40

MI28_t0.001_p20_r40

MI28_t0.001_p20_r20

MI28_t0.01_p40_r80

MI28_t0.01_p40_r40

MI28_t0.01_p20_r40

MI28_t0.01_p20_r20

MI28_t0.1_p40_r80

MI28_t0.1_p40_r40

MI28_t0.1_p20_r40

MI28_t0.1_p20_r20

161

Figure 52. Performance profile of factor plus 3× solve time with MI28 comparing with

and without no-fill TRR updates.

Figure 53. Performance profile of factor plus 3× solve time with best incomplete
Cholesky preconditioners.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

MI28_t0.001_p40_r80_RRT

MI28_t0.001_p40_r80

MI28_t0.001_p40_r40_RRT

MI28_t0.001_p40_r40

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

RIC2S_t0.001_r80

RIC2S_t0.001_r40

MI28_t0.001_p40_r80_RRT

MI28_t0.001_p40_r80

RIC1_0.0001

nuRIC1_0.0001

ICTP_0.0001

162

From these tests, it is obvious that the standard incomplete Cholesky preconditioner,

even with quite small drop tolerances and diagonal shifts, is not sufficiently robust to

compute the search direction in an IPM consistently. It is difficult to draw general

conclusions about the RIC1, nuRIC1, and RIC2S preconditioners, with mixed rankings

across the problem set.

4.1.3.4 Sparse approximate inverses
The factorised sparse approximate inverse (FSAI) method was tested using the

FSAIPACK software package [221] designed for multicore systems. While the package

implements numerous sophisticated approximate inverse features, none of these

appeared to offer any advantage over the basic method during preliminary testing. The

same four re-ordering methods used for the IC factorisations were tested for FSAIPACK,

with the sparsity pattern for the approximate inverse being either the first, second, or

third power of A .

The performance profiles of efficiency and runtime for the FSAI preconditioners tested

are shown in Figure 54 and Figure 55. The FSAI-based methods solve between 50%

and 65% of the problems in the test set, with little difference in performance among the

orderings in general. The worst-performing methods used the dense sparsity patterns of

()3tril A . While the efficiency profile generally favoured the sparsity pattern of the

original matrix, the banded orderings with a power of two sparsity pattern achieved the

best runtime performance across the widest range of the problems tested. Interestingly,

the different orderings resulted in different iteration counts for the original sparsity

pattern (i.e. a power of 1).

Figure 56 and Figure 57 compare the efficiency and runtime performance against some

of the robust incomplete Cholesky preconditioners. The high α values in both figures

are indicative of the poor relative performance of the FSAI approach on these problems,

with FSAIPACK taking an order of magnitude or more longer than the IC preconditioners

for almost all the test systems. The FSAIPACK preconditioners were not considered

further.

163

Table 25. Incomplete Cholesky preconditioner non-zeros. Note that RIC2S and MI28
values include the number of entries in R . System best values are in bold.

Problem Iterat RIC2S
t1E-3 r80

RIC2S
t1E-3 r40

MI28 RRT
t1E-3 p40 r80

MI2
t1E-3 p40 r80

RIC1
t1E-4

nuRIC1
t1E-4

ICTP
t1E-4

2DfootingLB
1 48,181,944 29,567,544 47,763,010 29,148,610 18,257,763 18,257,763 -
5 48,460,693 29,846,293 47,937,439 29,323,039 19,015,901 19,015,901 -
26 - - - - - - -

2DfootingUB
1 35,863,514 21,902,714 35,697,251 21,736,451 12,097,548 12,426,641 10,094,413
7 36,563,155 22,602,355 36,252,173 22,291,373 13,717,719 14,068,063 10,870,684
23 36,053,109 22,092,309 35,439,227 21,478,427 16,737,184 16,737,184 -

2DtunnelLB
1 20,266,670 11,794,710 20,223,439 11,751,479 4,881,983 4,915,762 4,177,734
7 20,987,352 12,515,392 20,910,020 12,438,060 5,901,792 5,904,992 4,996,552
35 - - - - - - -

2DtunnelUB
1 17,969,636 10,283,276 17,999,158 10,312,798 3,454,875 3,488,087 3,342,097
8 18,524,172 10,837,812 18,546,363 10,860,003 4,155,104 4,145,446 3,850,849
22 18,352,489 10,666,129 18,345,865 10,659,505 4,247,076 4,247,076 -

3DsqrexcLB

1 19,069,324 12,414,480 18,091,705 11,487,151 12,500,731 13,143,543 10,741,933

9 20,410,118 13,759,088 18,493,103 11,884,427 22,932,096 23,160,451 14,669,871

16 19,863,716 13,241,902 - - 22,486,943 22,505,497 -

3DsqrexcUB

1 18,983,144 11,346,357 18,473,866 10,912,090 7,889,490 8,244,551 7,100,785

10 20,680,025 12,988,199 19,546,404 11,959,050 14,221,679 14,498,513 10,930,285

19 - 12,924,519 - - 15,586,904 15,638,940 11,559,253

3DsqrexcUB2

1 9,772,718 6,395,018 9,127,936 5,795,155 6,516,542 6,734,619 6,159,195

8 11,152,032 7,736,616 9,776,503 6,373,640 10,543,303 10,769,277 8,866,606

38 10,820,472 7,516,326 - - 11,237,777 11,287,605 8,804,988

3DsqrfootLB

1 18,185,705 11,965,697 17,220,198 11,072,771 12,185,233 12,185,233 10,759,061

11 19,172,459 12,947,414 17,894,544 11,748,154 15,724,039 - 9,100,987

19 18,945,357 12,724,609 - - - - 12,569,669

3DsqrfootUB

1 13,529,897 8,566,333 12,814,436 7,934,600 8,285,553 8,667,294 7,885,251

12 14,174,177 9,198,159 13,289,190 8,409,910 9,749,364 10,150,660 8,833,194

20 14,106,530 9,151,021 13,304,387 8,416,287 9,829,626 9,971,620 8,803,047

3DsqrfootUB
2

1 6,827,491 4,541,262 6,406,752 4,138,776 4,472,196 4,556,316 4,264,378

11 7,808,367 5,511,313 7,236,426 4,970,413 6,166,816 6,242,172 5,560,940

21 7,719,621 5,429,459 7,187,095 4,951,597 6,307,611 6,311,431 5,611,009

3DtunheadLB

1 30,020,565 20,027,864 - - - - -

12 31,337,618 21,362,894 - - - - -

21 - - - - - - -

3DtunheadUB

1 20,839,358 13,109,129 19,948,353 12,335,895 11,616,517 12,124,717 10,904,381

13 21,426,661 13,687,739 20,302,463 12,691,146 14,119,504 15,007,448 11,618,902

25 21,554,924 13,880,374 - - 18,815,249 18,890,351 12,982,614

164

Figure 54. Performance profile of FSAIPACK preconditioner efficiency.

Figure 55. Performance profile of build plus 3× solve time with FSAIPACK by ordering

and pattern power.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

FSAIPACK_RCM_k1

FSAIPACK_RCM_k2

FSAIPACK_RCM_k3

FSAIPACK_AMD_k1

FSAIPACK_AMD_k2

FSAIPACK_AMD_k3

FSAIPACK_METIS_k1

FSAIPACK_METIS_k2

FSAIPACK_METIS_k3

FSAIPACK_Sloan_k1

FSAIPACK_Sloan_k2

FSAIPACK_Sloan_k3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

FSAIPACK_RCM_1

FSAIPACK_RCM_2

FSAIPACK_RCM_3

FSAIPACK_AMD_1

FSAIPACK_AMD_2

FSAIPACK_AMD_3

FSAIPACK_METIS_1

FSAIPACK_METIS_2

FSAIPACK_METIS_3

FSAIPACK_Sloan_1

FSAIPACK_Sloan_2

FSAIPACK_Sloan_3

165

Figure 56. Performance profile comparison of efficiency between some of the robust

incomplete Cholesky factorisations and the better FSAI preconditioners.

Figure 57. Performance profile of preconditioner build plus solve with the best

incomplete Cholesky and FSAI preconditioners and parameter settings.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

RIC1_0.0001

nuRIC1_0.0001

FSAIPACK_AMD_1

FSAIPACK_RCM_2

FSAIPACK_Sloan_2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

RIC2S_t1E-3_r80

RIC2S_t1E-3_r40

RIC1_t1E-4

nuRIC1_t1E-4

FSAIPACK_AMD_k1

FSAIPACK_RCM_k2

FSAIPACK_Sloan_k2

166

4.2 Solving the augmented equations
The two basic preconditioners for saddle point systems are the block analytic inverse (or

block LU) factorisation and the block diagonal or block triangular preconditioner with

the Schur complement. Note that the block inverse can be considered to be a

generalisation of the oft-cited constraint preconditioner (see Reference [222] for a

discussion). Because of the better conditioning of the augmented equations (note the

substantially smaller upper bound on the error in Table 16 than the corresponding

systems in Table 15), it is possible that the Krylov solvers may be able to improve on

the performance on the Schur complement system. In the following, the block analytical

inverse

1 1 1 1 1 1

1 1 1

ˆ ˆ

ˆ ˆ

T T− − − − − −

− − −

 −

−

H H A S AH H A S

S AH S
,

the block-diagonal Schur preconditioner

 ˆα

H 0

0 S
,

and the block-triangular Schur preconditioner

k α

H
A S

,

are compared where ()2=H θW , ˆ T≈S LL is an incomplete factorisation of

() 2 T−A θW A , and α and k are scalars. Note that α is commonly set at 1 or 4− and

both values are tested with the block-diagonal preconditioner [222]. The scalar k is set

to 1.

The iteration counts using these preconditioners are shown in Table 26 and the solve

time multiplied by three plus the factorisation time are shown in Table 27. To enable a

direct comparison, the associated runtimes from the better of both the RIC1 and RIC2S

solvers tested are included. As expected, the number of iterations required to converge

to a residual 2-norm of 810− or less generally grew from the 1st system through to the

last system. The exception here was the 2DfootingLB problem in which the first system

167

took longer to converge than the second system tested. For the problems where it

converged, the triangular preconditioner converged in fewer iterations than the other

approaches. It should be noted, however, that each iteration of BiCGSTAB requires

twice the amount of work as PCG, but can be expected to converge approximately twice

as fast. With all these preconditioners, there was no improvement over the Schur

complement system approach when attempting to solve the last system for each

problem, with the block diagonal Schur (4α = −) and the block triangular Schur

preconditioners each solving three of the 12 last systems, and the other two

preconditioners not solving any. Interestingly, the two earlier systems from the

3DtunheadLB were solved, but took a large number of iterations to converge. The

runtime performance differs from the iteration count due to the operation count

difference between SymQMR and BiCGSTAB. The fastest of the four preconditioners

tested was the analytic block inverse, with the rest presenting mixed results. The two

block-diagonal Schur preconditioners performed similarly, with α set to 4− solving

more of the problems than 1α = . The block triangular Schur preconditioner often

outperformed the block diagonal preconditioner in the problems it solved, but failed on

more of the problems than the other preconditioners. While different systems were

being solved and, due to the way scaling was used to precondition the Schur

complement system, the convergence criterion represented different levels of accuracy,

and the results indicate a strong disadvantage in terms of runtime by solving the

augmented equations instead of the Schur complement system. Furthermore, very little

progress was made towards a solution for the later systems that were not solved within

the 20,000 iteration limit, with some even diverging with the block triangular

preconditioner. The performance profile in Figure 58 shows that not only were the

Schur complement based methods able solve the problems considerably more quickly,

they also solved considerably more of the systems in the test set.

168

Table 26. Saddle point preconditioner iteration counts. † indicates that convergence was not
achieved within the maximum 20,000 iterations.

Problem Iteration Block inverse
SymQMR

Block diagonal Schur (1)
SymQMR

Block diagonal Schur (-4)
SymQMR

Block triangular Schur (1)
BiCGSTAB

2DfootingLB

1 812 1,523 1,548 418

5 780 1,506 1,397 756

26 † † † †

2DfootingUB

1 51 96 101 30

7 70 128 128 42

23 † † † †

2DtunnelLB

1 37 72 74 21

7 77 146 144 59

35 † † † †

2DtunnelUB

1 25 48 50 16

8 49 90 90 35

22 † † 17,420 †

3DsqrexcLB

1 91 173 177 49

9 758 1,340 1,330 599

16 † † † †

3DsqrexcUB

1 141 264 266 119

10 764 1,489 1,379 1,517

19 † † † †

3DsqrexcUB2

1 75 140 143 52

8 453 832 830 350

38 † † † 17,743

3DsqrfootLB

1 27 50 56 16

11 69 128 125 39

19 † † † †

3DsqrfootUB

1 28 52 58 17

12 119 215 215 73

20 † † 8,947 14,898

3DsqrfootUB2

1 18 34 39 11

11 65 114 116 38

21 † † 3,042 2,696

3DtunheadLB

1 3,916 7,143 7,254 3,050

12 8,979 14,666 14,476 †

21 † † † †

3DtunheadUB
1 43 80 84 27

13 324 592 590 308
25 † † † †

169

Table 27. Saddle point preconditioner factor plus 3× solve time. RIC1 was used with
410τ −= and RIC2S with 310τ −= and 40p = . † indicates that convergence was not

achieved within the maximum 20,000 iterations. The fastest augmented equation times
are in bold.

Problem Iteration Block
inverse

Block diagonal
Schur

 (1)

Block diagonal
Schur
 (-4)

Block triangular
Schur

(1)
RIC1 RIC2S

2DfootingLB

1 173.4 267.3 276.4 144.2 70.3 85.7

5 168.6 272.5 257.7 262.5 63.6 67.3

26 † † † † † †

2DfootingUB

1 12.1 17.4 18.3 11.2 8.5 5.9

7 16.2 23.2 23.2 14.9 11.0 7.0

23 † † † † 497.2 631.3

2DtunnelLB

1 4.1 6.1 6.3 3.7 1.6 2.1

7 8.0 12.2 12.3 9.5 1.9 3.5

35 † † † † † †

2DtunnelUB

1 2.9 4.1 4.3 † 1.0 1.2

8 5.3 7.5 7.6 † 1.2 1.6

22 † † 1298.6 † 73.6 126.1

3DsqrexcLB

1 12.6 18.1 18.7 11.6 8.7 8.6

9 86.9 128.7 130.1 115.5 37.6 44.9

16 † † † † 596.9 1212.4

3DsqrexcUB

1 19.2 27.6 28.2 24.1 9.6 7.9

10 102.9 165.1 153.6 315.9 35.8 39.9

19 † † † † 730.3 1133.3

3DsqrexcUB2

1 9.0 11.4 11.9 † 3.3 4.1

8 49.0 65.6 66.5 60.7 11.6 17.2

38 † † † † 206.2 585.3

3DsqrfootLB

1 5.3 6.9 7.3 5.1 6.0 4.2

11 10.7 14.9 14.7 10.2 13.0 15.6

19 † † † † † 389.4

3DsqrfootUB

1 4.1 5.4 5.8 3.8 3.3 2.5

12 13.8 19.2 19.4 13.3 5.9 5.6

20 † † 712.8 † 68.5 62.5

3DsqrfootUB2

1 2.5 2.9 3.1 2.3 1.9 1.3

11 7.2 8.5 8.7 6.5 3.0 2.6

21 † † 187.3 360.5 12.1 23.7

3DtunheadLB

1 636.5 992.2 1026.2 849.2 † 317.5

12 1529.7 2180.8 2196.7 † † 492.3

21 † † † † † †

3DtunheadUB
1 9.4 12.5 13.4 8.9 5.1 5.0

13 54.5 77.7 78.6 78.1 11.7 18.8
25 † † † † 242.6 879.9

170

Figure 58. Performance profile of runtime plus 3× solve time with conventional saddle

point preconditioners. The RIC1 solver used 410τ −= , and RIC2S used 310τ −= and
40r = .

4.3 Addressing the ill-conditioning in the search direction
In an attempt to overcome the increasingly unfavourable behaviour exhibited by the

preconditioned iterative schemes for the majority of the FELA problems in the test set

as the IPM converges towards a solution, a range of approaches were considered. These

generally sought some method of dealing with the ill-conditioning in the search

direction, but were not found to perform well in preliminary testing and so were not

considered further. The approaches included the augmented preconditioner [199] that

tries to solve KKT equations of the form

T

=

x pF A
y qA 0

with an iterative solver using the block-triangular preconditioner

1T Tk− +

F A W A A
0 W

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

Block inverse

Block-diagonal Schur (1)

Block-triangular Schur

Block-diagonal Schur (-4)

RIC1

RIC2s

171

or the block-diagonal preconditioner

1T − +

F A W A 0
0 W

.

The majority of the computational effort required to use this preconditioner lies in

solving a system with the ()1,1 block 1T −+F A W A , which should be better conditioned

than F for an appropriate choice of W , but becomes significantly larger with many

more non-zeros than the Schur complement system. The augmented Lagrangian Uzawa

method was found to perform poorly for the same reason, with an almost identical

system requiring solution. Similarly, the reduced augmented equations [76] described in

Section 2.4.3.6became much larger and more dense than the Schur complement system.

The final approach considered was along the lines of that used by Al-Jeiroudi [128] for

solving linear programs. This scheme seeks a nonsingular basis in the constraint matrix

that is associated with the small eigenvalues of the ()1,1 block in the augmented

equations (note that this is diagonal for linear programming). While very low-fill LU

factors could be found for the upper bound constraint matrices, the block-diagonal

nature of the ()1,1 block in the second-order cone programs meant that in order to

identify which columns should be considered for inclusion in the basis through

diagonalisation of the ()1,1 block, the accompanying modification of the constraint

matrix made it significantly more dense than the original (very few of the cones have

eigenvalues which are all small, with most having at least one eigenvalue ()1O).

4.4 Using PCG to compute the search direction in an IPM
Having considered a range of Krylov subspace solvers for representative systems from

the IPM and selected the best performing methods, these iterative solvers were then

used inside the Mixup8 IPM solver by replacing the supernodal Cholesky factorisation.

Note that no presolving was done as it was found to degrade the performance when used

in conjunction with the Krylov subspace solvers.

Unfortunately, the Krylov subspace methods may exhibit erratic convergence which

makes it difficult to establish reliable tests that discern between idling or divergent

behaviour [120]. The approach used here was to set a maximum number of iterations for

172

the Krylov solver when computing the first search direction, and then limit each

subsequent search direction computation to use a maximum of 150% of the iterations

used at the previous IPM step. A limit of 200% was used for nuRIC1 to account for the

sudden deterioration of the preconditioner quality as ν was increased when non-

positive pivots were encountered. This appeared to work well for the problems tested,

limiting the number of iterations to a reasonable number as the IPM progressed without

having too much of an adverse impact on the accuracy of the search direction.

In contrast to the maximum iteration count, the convergence tolerance is likely to have a

more clearly defined impact on the ability of the IPM to obtain a solution and reduce the

primal and dual infeasibilities. Two obvious strategies are to set an absolute

convergence tolerance, which remains fixed, or adopt an adaptive convergence

tolerance that becomes tighter as the IPM advances towards the solution. The absolute

tolerance will provide better quality search directions early in the IPM iterations, but at

a higher cost, while the adaptive approach permits lower accuracy to reduce the number

of iterations performed by the iterative solver. On 64-bit personal computers, IEEE

machine precision is approximately 1610− , and it is not uncommon for direct

factorisations to be able to achieve a residual norm () ()k k= −r b Ax of around 1410−

for well-conditioned SPD systems. If one were seeking to simply substitute an iterative

solver for a direct method, this provides a good starting point for setting the

convergence tolerance. Alternatively, the convergence tolerance for the optimisation

problems (primal and dual infeasibilities, and the normalised complementarity gap) are

usually set to 810− , suggesting a minimum convergence accuracy because perturbations

in the search direction of the order 810− or bigger are likely to adversely impact

progress towards a feasible solution. It thus seems reasonable to test convergence

tolerances between 810− and 1410− . Considering the need to approach a feasible solution

as well as an optimal solution, an adaptive tolerance should seek to avoid having an

adverse impact on the reduction of the primal and dual infeasibilities, while still

allowing for a reduction in the accuracy necessary at each iteration. By choosing a

minimum required accuracy, and then reducing that to be some multiple of the

minimum of the primal and dual infeasibilities, a certain minimum solution accuracy

can be obtained in the early phase of the IPM, with an adaptive choice being used later.

173

Unfortunately, preliminary testing indicated that lower accuracy search directions in

early IPM iterations had an adverse impact on the IPM convergence towards the

optimisation problem solution. The convergence tolerance is thus not modified

throughout the IPM. The problem with both the adaptive and absolute convergence

tolerances is the failure to take into account the effect of system conditioning on

solution accuracy. As recommended by Barret et al. [120], a convergence tolerance of

() ()()max 1,k kε
∞∞ ∞

≤ +r A x b , where A was approximated by ()max ija , was

used with 1310ε −= . Larger values of ε were found to be insufficiently accurate in the

later iterations of the IPM, while smaller values were too difficult to satisfy for some

systems.

For the iterative solver-based IPMs the primal infeasibility, dual infeasibility, and

relative gap convergence tolerances were set to 710− to avoid the severely ill-

conditioned matrices in the last two to three optimisation iterations. The step length

relaxation factor was set at 0.95 and the free variables were split into positive and

negative linear variables.

4.4.1.1 Small problem set
The preconditioners nuRIC1 (410τ −=), RIC1 (410τ −=), and RIC2S (310τ −= and

40r =) were used to compute the search direction at each iteration of the IPM for the

small problems in the test set. The results are shown in Table 28. The best performing

approach from Chapter 3 is included here for comparison, and runtimes and factor non-

zeros as a multiple of the direct solver-based IPM are shown in Table 29. Figure 59

shows the performance profile with the three preconditioners.

Overall, the iterative solver results for the small test set are discouraging. It is

immediately clear that the iterative solver-based IPMs require much longer runtimes

than the direct solver-based IPMs, ranging from 9 times to 181 times longer. The

storage requirements for the incomplete factors for the three-dimensional problems were

all less than that of the direct solver except for 3DsqrexcUB2S, where the incomplete

factor required 45% more storage than the full factor. This is due to the significant

savings enabled by eliminating all but one of the free variables during the presolve

when using the direct solver along with the better sparsity-preserving ordering.

174

The two dimensional problems are worse in relative terms, with RIC2S requiring 20%

to 140% more storage, while the robust incomplete Cholesky preconditioners only

saving 10 to 20%, except on 2DtunnelUB, where the storage requirements are

practically the same as the direct solver. Coupled with the computational time of 15 × to

over 200× longer to solve, the best iterative approaches considered here are not suitable

for two-dimensional finite element limit analysis.

Figure 59. Performance profile of runtime on small problem set by incomplete Cholesky

preconditioner.

4.4.1.2 The growth of computational requirements on the square footing problems
While the iterative solver-based IPMs do not perform well compared to those based on

a direct solver for the small problem set, it was hoped that the iterative solvers could

show favourable growth characteristics as the problems grow in size. To perform these

tests, the small, medium, and large square footing problems were solved with the better

performing iterative solvers being used to compute the search directions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1 1.5 2 2.5 3 3.5 4

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

RIC1

nuRIC1

RIC2S

175

Table 28. IPM results on small problem set with Krylov subspace solvers. * estimated.
Problem Solver nitIPM nitPCG tT tF tS pobj pinf dinf relgap nnz(L)

2DfootingLB

mixup8 28 30.0 14.2 7.6 -14.833 2E-8 8E-9 8E-9 2.58E+7

nuRIC1 49,450 2.31E+7

RIC1 12 30,837 1855.7 50.4 1802.7 -14.784 3E-6 4E-7 3E-7 2.31E+7

RIC2S 11 44,078 1784.1 29.4 1752.1 -14.741 5E-5 7E-7 6E-7 1.22E+7

2DfootingUB

mixup8 23 21.0 7.5 5.8 -14.916 8E-9 7E-9 6E-9 1.83E+7

nuRIC1 17 13,795 608.7 40.8 563.2 -14.909 9E-8 8E-8 8E-8 1.46E+7

RIC1 17 14,881 626.6 34.0 587.9 -14.909 9E-8 8E-8 8E-8 1.46E+7

RIC2S 17 26,080 800.6 27.4 768.5 -14.909 9E-8 8E-8 8E-8 9.09E+6

2DtunnelLB

mixup8 42 14.2 6.1 4.5 -0.791 9E-8 6E-9 6E-9 7.86E+6

nuRIC1 29 169,969 3360.3 26.9 3330.7* -0.790 6E-8 9E-8 9E-8 6.36E+6

RIC1 29 165,948 3254.7 24.6 3227.5 -0.790 6E-8 9E-8 9E-8 6.36E+6

RIC2S 219,010 4.27E+6

2DtunnelUB

mixup8 19 5.6 1.7 1.5 -0.823 3E-9 6E-9 6E-9 4.59E+6

nuRIC1 22 15,597 247.3 13.2 231.6 -0.824 8E-8 1E-8 1E-8 4.72E+6

RIC1 19 5,026 86.4 9.9 74.4 -0.823 5E-8 8E-8 7E-8 4.73E+6

RIC2S 19 9,331 125.2 10.0 113.1 -0.823 6E-8 8E-8 7E-8 3.31E+6

3DsqrexcLB

mixup8 17 19.9 15.8 2.2 -121.988 1E-9 7E-9 7E-9 2.41E+7

nuRIC1 16 24,293 1388.7 252.6 1134.7 -121.987 4E-8 7E-8 7E-8 2.25E+7

RIC1 13 3,367 312.6 160.6 150.8 -121.922 1E-5 3E-6 3E-6 2.24E+7

RIC2S 17 87,527 2698.8 72.5 2624.8 -121.987 2E-7 7E-8 7E-8 7.30E+6

3DsqrexcUB

mixup8 19 18.4 13.5 2.2 -155.149 5E-10 4E-9 4E-9 1.85E+7

nuRIC1 19 40,152 1659.4 162.8 1494.3 -155.148 7E-9 7E-8 7E-8 1.60E+7

RIC1 19 61,735 2351.0 121.2 2227.5 -155.148 4E-8 7E-8 7E-8 1.58E+7

RIC2S 19 137,020 2665.6 60.0 2603.4 -155.148 3E-8 7E-8 7E-8 5.53E+6

3DsqrexcUB2

mixup8 17 9.3 4.4 1.3 -138.246 1E-9 9E-9 9E-9 7.93E+6

nuRIC1 37 43,349 1401.9 290.8 1103.5 -138.196 9E-8 1E-7 9E-8 1.15E+7

RIC1 38 57,903 1671.3 240.9 1422.9 -138.196 2E-7 1E-7 9E-8 1.15E+7

RIC2S 245,586 4.49E+6

3DsqrfootLB

mixup8 20 29.7 24.8 2.8 -5.492 1E-9 1E-8 1E-8 2.92E+7

nuRIC1 58,306 1.50E+7

RIC1 72,733 1.55E+7

RIC2S 18 9,346 265.6 54.4 209.8 -5.492 1E-6 4E-7 4E-7 6.86E+6

3DsqrfootUB

mixup8 19 21.1 16.7 2.2 -6.234 3E-10 3E-9 3E-9 2.08E+7

nuRIC1 20 4,255 177.6 66.5 109.0 -6.234 7E-9 5E-8 5E-8 1.03E+7

RIC1 20 9,890 305.3 58.0 245.1 -6.234 9E-9 5E-8 5E-8 1.00E+7

RIC2S 20 23,645 372.7 39.1 331.7 -6.234 5E-8 5E-8 5E-8 4.31E+6

3DsqrfootUB2

mixup8 19 11.2 5.9 1.3 -6.170 6E-10 6E-9 6E-9 8.93E+6

nuRIC1 21 2,283 103.8 59.8 39.6 -6.169 2E-8 9E-8 8E-8 6.47E+6

RIC1 21 3,064 103.4 48.1 50.7 -6.169 9E-9 9E-8 8E-8 6.47E+6

RIC2S 21 12,995 172.9 27.2 141.2 -6.169 1E-8 9E-8 8E-8 3.27E+6

3DtunheadLB

mixup8 22 48.3 39.8 5.0 -22.394 1E-9 6E-9 6E-9 4.35E+7

nuRIC1 53,121 2.57E+7

RIC1 30,180 2.05E+7

RIC2S 90,326 1.13E+7

3DtunheadUB

mixup8 20 32.9 25.7 3.9 -33.431 1E-9 7E-9 7E-9 3.13E+7
nuRIC1 19 816 143.5 105.8 34.7 -33.375 2E-5 4E-6 4E-6 1.71E+7
RIC1 25 24,380 1154.1 125.4 1024.6 -33.431 8E-8 7E-8 7E-8 1.85E+7

RIC2S 25 154,719 3459.2 76.8 3378.3 -33.431 9E-8 7E-8 7E-8 6.33E+6

176

Table 29. Runtime and incomplete factorisation size as a multiple of Mixup8 results.
Problem Solver tT / tmixup8 nnz(LIC) / nnz(L)

2DfootingLB

nuRIC1 - 90%

RIC1 62 90%

RIC2S - 120%

2DfootingUB

nuRIC1 29 79%

RIC1 30 79%

RIC2S 38 126%

2DtunnelLB

nuRIC1 237 81%

RIC1 230 81%

RIC2S - 162%

2DtunnelUB

nuRIC1 44 103%

RIC1 15 103%

RIC2S 22 239%

3DsqrexcLB

nuRIC1 70 93%

RIC1 - 93%

RIC2S 135 57%

3DsqrexcUB

nuRIC1 90 86%

RIC1 128 86%

RIC2S 145 71%

3DsqrexcUB2

nuRIC1 152 145%

RIC1 181 145%

RIC2S - 99%

3DsqrfootLB

nuRIC1 - 51%

RIC1 - 53%

RIC2S 9 45%

3DsqrfootUB

nuRIC1 8 50%

RIC1 14 48%

RIC2S 18 44%

3DsqrfootUB2

nuRIC1 9 72%

RIC1 9 72%

RIC2S 15 62%

3DtunheadLB

nuRIC1 - 59%

RIC1 - 47%

RIC2S - 49%

3DtunheadUB

nuRIC1 - 55%

RIC1 35 59%

RIC2S 105 44%

 The results show that the lower bounds are especially difficult to compute when using

the Krylov solvers. It is promising that the total PCG iterations experience only

moderate growth as the problem size grows. Similarly, the number of IPM iterations

does not increase with problem size for the Krylov solver-based analyses, However, as

with the small problem set, the IPM took more iterations to converge using an iterative

solver than with a direct solver, even when a looser tolerance was used. All the primal

objective function values were the same or very close for the upper bound problems, but

failure through the time cut-off and lack of convergence occurred on many of the lower

bound problems.

177

Figure 60 shows the growth in the number of non-zeros in the incomplete factors for

3DsqrfootUB2, Figure 61 shows the growth in total solution time for 3DsqrfootUB2,

and Figure 62 and Figure 63 show the same for 3DsqrfootUB. As can be seen in Figure

60 and Figure 62, the preconditioned iterative solvers show very close to linear growth

in the factor size across these problems, making them ideal for use when the problems

are too large to factorise with a direct method.

Unfortunately, the iterative solvers exhibit nonlinear growth in the runtime as the

problem size increases. This is shown in Figure 61 and Figure 63. It should be kept in

mind that this behaviour is being observed with convergence tolerances that were

relaxed for the iterative solver and on the two problems for which the iterative solver-

based approaches attained the best relative performance. Thus, it is likely that the only

situation in which an iterative solver should be used to compute the IPM search

direction for large-scale finite element analysis problems is when memory limitations

prevent the full Cholesky factor from being computed. Even then, extreme care must be

taken with the parameter settings to ensure that the preconditioner is not too large while

still being accurate enough to accelerate convergence.

178

Table 30. Results for square footing problems.
Problem Solver nitIPM nitPCG tT tF tS pobj pinf dinf relgap m n nnz(A) nnz(L)

3DsqrfootLBS

mixup8 20 29.7 24.8 2.8 -5.492 1E-09 1E-08 1E-08 126,972 181,008 1,461,776 29,160,870

nuRIC1 58306 153,648 208,008 1,785,434 15,001,179

RIC1 72733 153,648 208,008 1,785,434 15,520,104

3DsqrfootLBM

mixup8 24 174.9 159.6 9.7 -5.557 1E-09 4E-09 4E-09 301,120 429,312 3,482,024 95,396,160

nuRIC1 101265 363,904 492,672 4,246,600 40,799,574

RIC1 14 37290 4036.8 238.2 3795.6 -5.549 7E-05 1E-05 1E-05 363,904 492,672 4,246,600 42,538,197

3DsqrfootLBL

mixup8 24 1588.3 1526.1 42.1 -5.629 3E-09 6E-09 6E-09 1,016,784 1,449,792 11,807,552 485,720,287

nuRIC1 8112 1,227,168 1,661,472 14,379,178 125,108,516

RIC1 14487 1,227,168 1,661,472 14,379,178 154,199,318

3DsqrfootUBS

mixup8 19 21.1 16.7 2.2 -6.234 3E-10 3E-09 3E-09 65,906 299,498 722,552 20,767,502

nuRIC1 20 4255 177.6 66.5 109.0 -6.234 7E-09 5E-08 5E-08 121,932 360,720 1,190,052 10,280,051

RIC1 20 9890 305.3 58.0 245.1 -6.234 9E-09 5E-08 5E-08 121,932 360,720 1,190,052 10,012,930

3DsqrfootUBM

mixup8 19 92.7 81.1 5.9 -6.112 8E-10 8E-09 8E-09 159,042 716,402 1,758,648 67,045,990

nuRIC1 21 2074 388.4 235.3 148.2 -6.112 9E-07 3E-07 3E-07 289,728 856,320 2,833,728 27,723,951

RIC1 22 13034 1081.2 200.9 874.9 -6.112 3E-08 3E-08 2E-08 289,728 856,320 2,833,728 26,552,870

3DsqrfootUBL

mixup8 21 1113.6 1061.6 30.7 -5.991 7E-10 6E-09 6E-09 546,242 2,439,674 6,091,328 383,195,411

nuRIC1 22 9132 3778.0 1268.5 2491.0 -5.991 1E-08 8E-08 8E-08 980,208 2,894,400 9,607,248 107,277,965

RIC1 22 21574 6506.2 907.3 5580.3 -5.991 8E-09 8E-08 8E-08 980,208 2,894,400 9,607,248 101,618,223

3DsqrfootUB2S

mixup8 19 11.2 5.9 1.3 -6.170 6E-10 6E-09 6E-09 27,480 181,440 1,025,482 8,929,792

nuRIC1 21 2283 103.8 59.8 39.6 -6.169 2E-08 9E-08 8E-08 56,549 213,708 1,995,855 6,468,086

RIC1 21 3064 103.4 48.1 50.7 -6.169 9E-09 9E-08 8E-08 56,549 213,708 1,995,855 6,465,459

RIC2S 21 12995 172.9 27.2 141.2 -6.169 1E-08 9E-08 8E-08 56,549 213,708 1,995,855 3,266,057

3DsqrfootUB2M

mixup8 19 43.7 30.6 3.7 -6.048 8E-10 8E-09 8E-09 65,176 430,080 2,497,586 30,064,290

nuRIC1 23 3290 383.6 220.7 151.2 -6.048 1E-08 5E-08 4E-08 132,149 502,668 4,700,321 18,465,436

RIC1 23 4244 396.7 200.3 184.9 -6.048 1E-08 5E-08 4E-08 132,149 502,668 4,700,321 18,158,845

RIC2S 23 15059 504.8 83.3 410.0 -6.048 8E-09 5E-08 4E-08 132,149 502,668 4,700,321 8,125,643

3DsqrfootUB2L

mixup8 19 378.7 330.4 15.4 -5.949 5E-10 5E-09 5E-09 220,092 1,451,520 8,658,898 168,066,502
nuRIC1 22 3146 2020.9 1413.0 569.8 -5.949 1E-08 5E-08 4E-08 439,757 1,683,660 15,761,109 77,203,689

RIC1 22 4676 1842.1 1004.2 783.0 -5.949 8E-09 5E-08 4E-08 439,757 1,683,660 15,761,109 73,625,152
RIC2S 22 30272 3263.2 312.8 2912.2 -5.949 2E-08 5E-08 4E-08 439,757 1,683,660 15,761,109 28,815,402

179

Figure 60. Number of non-zeros in factorisation versus number of constraints for

3DsqrfootUB2. Note that this includes the memory allocated for R in RIC2S.

Figure 61. Total solution time versus number of constraints for 3DsqrfootUB2.

 -

 20,000,000

 40,000,000

 60,000,000

 80,000,000

 100,000,000

 120,000,000

 140,000,000

 160,000,000

 180,000,000

 - 100,000 200,000 300,000 400,000 500,000

N
um

be
r

of
 n

on
-z

er
os

 in
 fa

ct
or

is
at

io
n

Problem constraints

mixup8

RIC1

nuRIC1

RIC2s

0

1000

2000

3000

4000

5000

6000

7000

 - 100,000 200,000 300,000 400,000 500,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem constraints

mixup8

RIC1

nuRIC1

RIC2s

180

Figure 62. Number of non-zeros in factorisation versus number of constraints for

3DsqrfootUB.

Figure 63. Total solution time versus number of constraints for 3DsqrfootUB.

 -

 50,000,000

 100,000,000

 150,000,000

 200,000,000

 250,000,000

 300,000,000

 350,000,000

 400,000,000

 450,000,000

 - 200,000 400,000 600,000 800,000 1,000,000 1,200,000

N
um

be
r

of
 n

on
-z

er
os

 in
 fa

ct
or

is
at

io
n

Problem constraints

mixup8

RIC1

nuRIC1

0

1000

2000

3000

4000

5000

6000

7000

 - 200,000 400,000 600,000 800,000 1,000,000 1,200,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem constraints

mixup8

RIC1

nuRIC1

181

Chapter 5 Parallelisation of the solution scheme
In order to solve very large FELA problems in a practical manner, it is necessary to

minimise the associated wall-clock time required. As processor manufacturers move

away from increasing the speed of single processing cores to introducing more cores, it

is crucial that performance-critical portions of the IPM code are parallelised where

possible. In the following, a brief overview of parallel computing is provided, before

describing an IPM designed to take advantage of parallel processing capability and

presenting the performance results obtained with it. Because of the relatively poor

floating point operation speed of sparse matrix-vector multiplications, as well as the

lack of their robustness and serial performance, the Krylov subspace solvers are not

considered further in this Thesis. Instead, we aim to exploit the high performance

obtained by dense matrix multiplication kernels for direct solvers.

5.1 Overview of parallel computing
Although a common interpretation of Moore’s Law finds the increase in computing

performance has slowed since the early 2000s in terms of processor clock rate, the

widespread introduction of parallel computing architectures has continued to support

Moore’s Law, and is likely to continue to do so [223]. As a result of microprocessor

chips being released with increasing number of cores, application performance will no

longer experience the performance improvements gained historically through

uniprocessor development. In addition to the multicore processors, add-on cards

conventionally designed for rendering graphics (known as graphical processing units or

GPUs) are now being exploited for general-purpose parallel computation. GPUs today

have thousands of cores per device, and some are built specifically for computation. To

increase the total computational power further, individual machines are grouped

together in a cluster and messages are passed between the machines via a network. Such

parallelism is often referred to as distributed memory parallelism because of the

individual memory owned by each machine that is not directly accessible by any other

machine. This is in contrast to shared memory parallelism, such as that on a multicore

machine, where each core has direct access to the same memory. GPUs have their own

memory and require data to be copied between the host machine and the device.

182

Obviously, in network clusters, there are both the shared and the distributed memory

architectures to work with.

Interestingly, many of the clusters built recently that rank among the fastest

supercomputers in the world utilise general purpose GPUs. As an example, the Titan, a

heterogeneous computing system containing 18,688 networked CPUs (central

processing units), includes as many NVIDIA Tesla GPUs (graphics processing units) as

there are CPUs along with 710TB of RAM. Each CPU is a 16 core AMD Opteron,

while each Tesla GPU has 2688 processing cores. Solving a dense system of linear

equations, the system has performed at 1517.59 10× floating point operations per

second. As of 2013, the list of the top 500 supercomputers in the world no longer

features any systems with less than 2,000 processing cores.

In order to achieve high fractions of the peak performance from a given machine, all of

the machine’s capabilities must be exploited as much as possible. On modern machines,

this includes vectorisation, data locality, and interprocess communication. There are

also other important aspects that are largely invisible from software and so will not be

addressed here (for example, pipelining and multithreading; see [224] for an in-depth

treatment). Vector, or SIMD (single instruction multiple data), processing allows the

same operation to be performed on multiple data items simultaneously. While modern

CPU chips often include vector capabilities for 2 double precision floating point

operations at a time, GPUs are SIMD machines that can process many more operations

concurrently. The performance of both, however, is usually determined by memory

access and data movement. Modern CPUs contain multiple levels of cache in a

hierarchy, starting with a hard drive on the lower level with high latency but large

amounts of storage, and progressing to caches with lower latencies but smaller storage

capacity through to the on-chip registers. Much effort is put into minimising the amount

and impact of data movement across the memory hierarchy, especially for operations

with significant data re-use such as matrix-matrix multiplication. As sending, waiting

for, and receiving messages adds to the overhead of a parallel program, interprocess

communication should also be minimised. Such communication may be between,

among others, threads of a multithreaded application on a modern CPU, co-operative

work performed by a cluster of computers, or between a host computer and a GPU.

183

5.2 Parallelisation of the IPM
In determining where effort should be focussed within the IPM for the LPs and SOCPs

solved here, guidance is provided by Amdahl’s Law: the execution time after an

improvement will be equal to the execution time affected by the improvement divided

by the amount of improvement plus the execution time that is unaffected. This makes it

clear that unless the improvement will affect a large fraction of the overall runtime, then

limited improvement is possible. With the majority of the IPM solution time in the

factorisation of the coefficient system defining the search direction, improving the linear

solver has the most potential to make the biggest impact on reducing the overall

runtime. Table 28 and Table 30 report the factorisation time for some of the test

problems, showing that in most cases over 75% of the total time is spent in the

factorisation routine. While other areas are able to be parallelised and are likely to yield

some improvement [27], [59], [225], the benefit is not expected to be significant for

FELA problems. It is thus expected that, through the use of parallel dense linear algebra

subroutines, notably the level 3 BLAS matrix-matrix multiplication routine that allows

significant reuse of data as well as exhibiting naturally independent operations that can

be run in parallel, the runtime of the solvers can be significantly reduced. The main

hurdle to be overcome for sparse linear equation solvers is ensuring that the dense

subproblems are large enough to fully exploit the available performance of the

hardware. Fortunately, many of the supernodes, especially as one moves towards the

root of the elimination tree, are large enough to expect a major improvement if a

machine’s parallel computing resources can be exploited. This approach also enables

pre-compiled and highly optimised BLAS libraries to be used on single machines.

These parallel libraries have been tuned for the hardware and provide a high fraction of

peak hardware performance. It should be noted that sparse linear equation solvers have

been developed for distributed systems, including the solver in IBM’s Watson Sparse

Matrix Package (WSMP) [226], [227]. Most parallel linear equation solvers, however,

do not involve clusters of networked machines and instead rely on the parallel

processing capability of an individual machine.

For the Mixup8 implementation described in Section 3.4, the parallel Intel MKL 11.0.5

was used for the dense BLAS operations in the supernodal Cholesky factorisation. To

exploit the highly parallel capability of recent GPU hardware, a modified version of

184

CHOLMOD (version 3.0.3) was used. CHOLMOD was modified by discarding the

functionality to restart the factorisation when a non-positive pivot is encountered and

the same modified DPOTRF routine as Mixup8 uses is called in place of the BLAS

library routine. To test the improvement in performance, the problem set was solved

using MOSEK with multiple threads, Mixup8 using multiple threads, and Mixup8 utilising

a GPU. Note that it is not known what specific areas in MOSEK have been parallelised,

while the two Mixup8 programs are only exploiting parallelism in the factorisation of

the Schur complement system and subsequent solves, as well as any calls to the BLAS

library.

The parallel MOSEK code is labelled mospar, the parallel Mixup8 code mixpar, and the

code exploiting the GPU mixgpu. Both Mixup8 codes use the presolve process, exploit

fixed variables, and handle dense columns explicitly. Any free variables that are not

eliminated are regularised by setting the diagonal in the ()1,1 block of the augmented

equations to 1010− , with the exception of any free variable associated with a dense

column in which the augmented equation system is solved without regularisation. The

results presented in this chapter summarise simulations performed on an Intel Xeon E5-

1620 @ 3.60 GHz with 64GB RAM and an NVIDIA Tesla K20c GPU.

Figure 64 and Table 31 presents a comparison of the runtime between the parallel

solvers and the complete results on the small problem set, respectively. Figure 65 and

Table 32 present the same information but for the medium problems, and Figure 66

shows the iteration counts on the large problem set with Figure 67 and Table 32

containing the runtimes and complete results, respectively, for the large problems.

The two Mixup8 codes generally compute the same objective values, with slight

differences due to rounding differences in the solver that stem from different

accumulation processes when computing the contribution from the child supernodes. On

the GPU version, this process is scheduled dynamically, which means that small

differences may result from run to run. As expected, the iteration counts are almost

identical between the two Mixup8 solvers.

MOSEK computes similar objective values for most problems, but, as with the sequential

solver, it has trouble with the 2Dtunnel*B problems, converging on different solutions

185

in all three sizes. While the reason is not known, it is likely due to the deletion of a

constraint thought to be redundant. The commercial solver also has fewer non-zeros in

the factorisation, but this difference may be a result of the non-zero count reported for

the Mixup8 codes including the unused space in each supernode. It should be noted that

the GPU version of Mixup8 also converges on a different objective value for

2DtunnelLBL and appears to be caused by the slight difference arising from rounding

described above.

The difference in runtime on the small problem set shown in Figure 64 is not great nor

consistent across all problems, with the GPU version being slowest on all four of the

two-dimensional problems, and showing negligible improvement over the parallel

Mixup8 solver. Both Mixup8 solvers compare favourably against MOSEK on the three-

dimensional problems, being faster on all the small test problems except

3DsqrfootUB2S. This improvement is more pronounced and consistent across all of the

three-dimensional problems in the medium problem set as shown in Figure 65.

Moreover, the GPU version of Mixup8 is clearly faster than the CPU-only version on all

of the three-dimensional problems but again offers no improvement in the two-

dimensional cases. This is similar to the large problem set, although, to determine that

the two-dimensional performance results are mixed, one must look at Table 33 because

the scale required for the large three-dimensional problems obscure the details in Figure

67.

186

Figure 64. Comparison of the total solution time on the small problem set between the
parallel solvers.

Figure 65. Comparison of the total solution time on the medium problem set between
the parallel solvers.

0

10

20

30

40

50

60

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

mospar

mixpar

mixgpu

0

50

100

150

200

250

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

mospar

mixpar

mixgpu

187

Table 31. Parallel solver results on small problems.

Problem Solver nit tT tP tO pobj pfeas dfeas relgap m n nnz(A) nnz(L)

2DfootingLB
mospar 25 31.0 0.3 8.1 -14.831 5E-9 6E-9 6E-9 464,940 523,391 2.8E+6 1.8E+7

mixpar 29 32.6 0.2 2.2 -14.833 5E-8 8E-9 7E-9 465,080 523,530 2.8E+6 2.6E+7

mixgpu 27 36.2 0.3 3.6 -14.833 1E-8 8E-9 8E-9 465,080 523,530 2.8E+6 2.6E+7

2DfootingUB
mospar 20 19.9 0.5 4.9 -14.914 5E-10 7E-9 3E-9 348,040 696,990 1.9E+6 1.4E+7

mixpar 23 24.6 0.2 1.4 -14.916 8E-9 7E-9 6E-9 348,040 696,990 1.9E+6 1.8E+7

mixgpu 23 27.3 0.3 2.8 -14.916 8E-9 7E-9 6E-9 348,040 696,990 1.9E+6 1.8E+7

2DtunnelLB
mospar 19 11.0 0.8 3.1 -0.767 5E-8 3E-8 3E-8 106,462 182,924 1.6E+6 6.3E+6

mixpar 32 12.6 0.2 0.6 -0.790 8E-8 3E-8 3E-8 152,694 229,375 9.2E+5 7.9E+6

mixgpu 37 16.2 0.2 2.0 -0.791 1E-6 5E-9 5E-9 152,694 229,375 9.2E+5 7.9E+6

2DtunnelUB
mospar 16 7.9 0.9 1.2 -0.763 4E-8 6E-8 6E-8 51,916 243,158 7.7E+5 3.9E+6

mixpar 19 6.3 0.2 0.4 -0.823 3E-9 6E-9 6E-9 64,275 255,516 6.2E+5 4.6E+6

mixgpu 19 8.4 0.3 1.8 -0.823 3E-9 6E-9 6E-9 64,275 255,516 6.2E+5 4.6E+6

3DsqrexcLB
mospar 17 18.8 0.2 2.6 -121.987 1E-8 3E-8 3E-8 121,348 147,458 1.4E+6 2.1E+7

mixpar 17 14.1 0.2 0.6 -121.988 9E-10 7E-9 7E-9 121,348 147,457 1.4E+6 2.4E+7

mixgpu 17 13.5 0.2 2.0 -121.988 8E-10 7E-9 7E-9 121,348 147,457 1.4E+6 2.4E+7

3DsqrexcUB
mospar 19 16.2 0.3 1.3 -155.147 3E-8 4E-8 4E-8 69,648 248,834 7.9E+5 1.5E+7

mixpar 19 13.1 1.0 0.2 -155.149 5E-10 4E-9 4E-9 69,648 248,833 7.4E+5 1.9E+7

mixgpu 19 13.3 1.1 1.8 -155.149 5E-10 4E-9 4E-9 69,648 248,833 7.4E+5 1.9E+7

3DsqrexcUB2
mospar 25 11.7 0.6 1.3 -138.247 1E-7 2E-8 6E-9 31,227 152,221 1.2E+6 6.9E+6

mixpar 17 8.1 0.7 0.2 -138.246 1E-9 9E-9 9E-9 26,464 147,457 9.8E+5 7.9E+6

mixgpu 17 9.1 0.6 1.6 -138.246 1E-9 9E-9 9E-9 26,464 147,457 9.8E+5 7.9E+6

3DsqrfootLB
mospar 21 42.6 0.8 4.7 -5.492 9E-9 2E-8 2E-8 109,786 163,895 2.1E+6 3.3E+7

mixpar 20 18.7 0.1 0.6 -5.492 2E-9 1E-8 1E-8 126,972 181,008 1.5E+6 2.9E+7

mixgpu 20 16.7 0.1 2.1 -5.492 2E-9 1E-8 1E-8 126,972 181,008 1.5E+6 2.9E+7

3DsqrfootUB
mospar 18 18.6 0.7 2.3 -6.234 9E-9 2E-8 2E-8 36,430 270,023 1.0E+6 1.5E+7

mixpar 19 14.1 0.2 0.4 -6.234 3E-10 3E-9 3E-9 65,906 299,498 7.2E+5 2.1E+7

mixgpu 19 12.6 0.2 1.9 -6.234 3E-10 3E-9 3E-9 65,906 299,498 7.2E+5 2.1E+7

3DsqrfootUB2
mospar 19 9.1 0.5 1.1 -6.169 1E-8 3E-8 3E-8 27,882 181,843 1.1E+6 7.9E+6

mixpar 19 9.2 0.5 0.2 -6.170 6E-10 6E-9 6E-9 27,480 181,440 1.0E+6 8.9E+6

mixgpu 19 10.0 0.5 1.7 -6.170 6E-10 6E-9 6E-9 27,480 181,440 1.0E+6 8.9E+6

3DtunheadLB
mospar 24 54.3 0.5 5.0 -22.394 2E-5 7E-8 6E-7 203,063 239,581 2.4E+6 3.8E+7

mixpar 22 31.5 0.2 0.9 -22.394 1E-9 6E-9 6E-9 203,868 240,193 2.4E+6 4.3E+7

mixgpu 22 26.9 0.3 2.4 -22.394 1E-9 5E-9 5E-9 203,868 240,193 2.4E+6 4.3E+7

3DtunheadUB
mospar 20 27.5 0.4 2.0 -33.430 4E-8 4E-8 4E-8 112,752 406,730 1.2E+6 2.6E+7

mixpar 20 22.4 0.3 0.4 -33.431 1E-9 7E-9 7E-9 112,752 406,729 1.2E+6 3.1E+7

mixgpu 20 20.2 0.3 1.9 -33.431 1E-9 7E-9 7E-9 112,752 406,729 1.2E+6 3.1E+7

188

Table 32. Parallel solver results on medium problems.

Problem Solver nit tT tP tO pobj pfeas dfeas relgap m n nnz(A) nnz(L)

2DfootingLB
mospar 19 66.8 0.7 20.6 -14.824 9E-9 8E-9 8E-9 1,050,210 1,181,986 6.3E+6 4.6E+7

mixpar 25 68.5 0.5 5.4 -14.832 2E-8 8E-9 8E-9 1,050,420 1,182,195 6.3E+6 6.3E+7

mixgpu 23 72.8 0.6 6.8 -14.831 2E-8 1E-8 1E-8 1,050,420 1,182,195 6.3E+6 6.3E+7

2DfootingUB
mospar 20 45.4 1.1 12.4 -14.886 5E-10 5E-9 2E-9 786,660 1,574,685 4.3E+6 3.4E+7

mixpar 22 52.1 0.5 3.3 -14.889 8E-9 7E-9 7E-9 786,660 1,574,685 4.3E+6 4.5E+7

mixgpu 22 58.2 0.6 4.8 -14.889 8E-9 7E-9 7E-9 786,660 1,574,685 4.3E+6 4.5E+7

2DtunnelLB
mospar 16 26.7 2.0 7.3 -0.649 4E-8 4E-8 4E-8 267,653 439,945 3.2E+6 1.6E+7

mixpar 36 30.4 0.3 1.6 -0.798 2E-7 9E-8 9E-8 344,242 516,863 2.1E+6 1.9E+7

mixgpu 37 37.1 0.3 3.1 -0.798 2E-7 8E-8 8E-8 344,242 516,863 2.1E+6 1.9E+7

2DtunnelUB
mospar 15 18.5 2.6 3.4 -0.718 2E-8 2E-8 2E-8 144,197 575,059 1.7E+6 1.0E+7

mixpar 18 13.3 0.6 1.0 -0.816 4E-9 8E-9 8E-9 144,757 575,618 1.4E+6 1.1E+7

mixgpu 18 16.3 0.6 2.4 -0.816 4E-9 8E-9 8E-9 144,757 575,618 1.4E+6 1.1E+7

3DsqrexcLB
mospar 16 144.5 0.5 11.1 -125.520 1E-8 3E-8 3E-8 408,897 497,666 4.8E+6 1.1E+8

mixpar 17 89.1 1.5 2.1 -125.523 1E-9 9E-9 9E-9 408,897 497,665 4.7E+6 1.3E+8

mixgpu 17 51.9 1.6 3.6 -125.523 1E-9 9E-9 9E-9 408,897 497,665 4.7E+6 1.3E+8

3DsqrexcUB
mospar 18 113.9 0.9 4.8 -148.403 2E-8 3E-8 3E-8 239,652 850,178 2.7E+6 8.5E+7

mixpar 19 89.0 10.5 1.0 -148.408 6E-10 5E-9 5E-9 239,652 850,177 2.6E+6 1.0E+8

mixgpu 19 58.1 11.2 2.4 -148.408 6E-10 5E-9 5E-9 239,652 850,177 2.6E+6 1.0E+8

3DsqrexcUB2
mospar 24 66.6 2.2 5.4 -135.582 2E-7 3E-8 3E-8 104,910 513,656 4.0E+6 3.7E+7

mixpar 16 36.0 3.1 0.7 -135.584 8E-10 6E-9 6E-9 88,920 497,665 3.4E+6 4.3E+7

mixgpu 16 31.3 3.2 2.1 -135.584 8E-10 6E-9 6E-9 88,920 497,665 3.4E+6 4.3E+7

3DsqrfootLB
mospar 21 216.7 1.9 12.9 -5.557 1E-8 3E-8 3E-8 261,560 389,881 5.0E+6 1.1E+8

mixpar 24 88.2 0.3 1.5 -5.557 2E-9 4E-9 4E-9 301,120 429,312 3.5E+6 9.5E+7

mixgpu 24 49.3 0.3 3.0 -5.557 2E-9 5E-9 5E-9 301,120 429,312 3.5E+6 9.5E+7

3DsqrfootUB
mospar 21 100.9 2.0 7.1 -6.112 8E-9 2E-8 2E-8 91,185 648,546 2.5E+6 5.7E+7

mixpar 19 48.4 0.4 1.1 -6.112 8E-10 8E-9 8E-9 159,042 716,402 1.8E+6 6.7E+7

mixgpu 19 31.9 0.4 2.5 -6.112 8E-10 8E-9 8E-9 159,042 716,402 1.8E+6 6.7E+7

3DsqrfootUB2
mospar 19 33.0 1.3 3.0 -6.048 1E-8 3E-8 3E-8 65,970 430,875 2.6E+6 2.7E+7

mixpar 19 27.7 1.2 0.5 -6.048 8E-10 8E-9 8E-9 65,176 430,080 2.5E+6 3.0E+7

mixgpu 19 24.1 1.3 1.9 -6.048 8E-10 8E-9 8E-9 65,176 430,080 2.5E+6 3.0E+7

3DtunheadLB
mospar 30 217.0 1.3 12.8 -22.736 7E-8 1E-7 1E-6 486,495 573,281 5.8E+6 1.2E+8

mixpar 34 170.1 0.6 2.4 -22.736 7E-9 9E-9 9E-9 488,064 574,465 5.8E+6 1.4E+8

mixgpu 34 108.0 0.6 3.9 -22.736 1E-8 9E-9 9E-9 488,064 574,465 5.8E+6 1.3E+8

3DtunheadUB
mospar 20 110.3 1.0 5.6 -32.293 3E-8 3E-8 3E-8 274,032 980,834 3.0E+6 9.0E+7

mixpar 19 77.0 0.6 1.1 -32.295 1E-9 9E-9 9E-9 274,032 980,833 3.0E+6 1.1E+8

mixgpu 19 53.5 0.7 2.6 -32.295 1E-9 9E-9 9E-9 274,032 980,833 3.0E+6 1.1E+8

189

Figure 66. Comparison of the iteration count on the large problem set between the
parallel solvers.

Figure 67. Comparison of the total solution time on the large problem set between the
parallel solvers.

0
5

10
15
20
25
30
35
40

It
er

at
io

ns

Problem

mospar

mixpar

mixgpu

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem

mospar

mixpar

mixgpu

190

Table 33. Parallel solver results on large problems.

Problem Solver nit tT tP tO pobj pfeas dfeas relgap m n nnz(A) nnz(L)

2DfootingLB
mospar 16 117.8 1.2 39.3 -14.820 5E-9 7E-9 7E-9 1,870,680 2,105,181 1.1E+7 8.6E+7

mixpar 22 110.5 0.9 11.3 -14.830 3E-8 1E-8 1E-8 1,870,960 2,105,460 1.1E+7 1.2E+8

mixgpu 20 109.4 1.0 11.5 -14.830 3E-8 1E-8 1E-8 1,870,960 2,105,460 1.1E+7 1.2E+8

2DfootingUB
mospar 17 79.3 1.9 24.2 -14.868 4E-10 6E-9 3E-9 1,401,680 2,805,180 7.7E+6 6.5E+7

mixpar 18 78.8 0.9 6.2 -14.876 8E-9 7E-9 7E-9 1,401,680 2,805,180 7.7E+6 8.6E+7

mixgpu 18 87.5 1.1 7.8 -14.876 8E-9 7E-9 7E-9 1,401,680 2,805,180 7.7E+6 8.6E+7

2DtunnelLB
mospar 15 48.8 3.5 13.2 -0.480 5E-8 5E-8 5E-8 513,831 820,353 5.2E+6 2.8E+7

mixpar 37 58.5 0.5 3.0 -0.800 4E-6 7E-8 7E-8 612,588 919,549 3.7E+6 3.7E+7

mixgpu 28 52.5 0.6 4.4 -0.694 5E-6 7E-6 7E-6 612,588 919,549 3.7E+6 3.7E+7

2DtunnelUB
mospar 15 36.0 4.6 6.9 -0.581 4E-8 2E-8 2E-8 301,965 1,068,447 3.0E+6 2.0E+7

mixpar 18 24.7 1.0 1.8 -0.812 3E-9 6E-9 6E-9 257,049 1,023,530 2.5E+6 2.2E+7

mixgpu 18 29.1 1.1 3.2 -0.812 3E-9 6E-9 6E-9 257,049 1,023,530 2.5E+6 2.2E+7

3DsqrexcLB
mospar 20 376.5 1.0 22.6 -123.869 1E-8 3E-8 3E-8 763,216 930,818 8.9E+6 2.4E+8

mixpar 21 254.9 4.7 4.2 -123.872 4E-9 1E-8 1E-8 763,216 930,817 8.8E+6 2.7E+8

mixgpu 21 125.8 5.1 5.7 -123.872 3E-9 1E-8 1E-8 763,216 930,817 8.8E+6 2.7E+8

3DsqrexcUB
mospar 17 498.6 2.1 13.7 -144.429 3E-8 4E-8 4E-8 573,504 2,027,522 6.6E+6 2.9E+8

mixpar 18 386.5 57.2 2.5 -144.443 9E-10 8E-9 8E-9 573,504 2,027,521 6.2E+6 3.4E+8

mixgpu 18 191.4 61.6 4.0 -144.443 9E-10 8E-9 8E-9 573,504 2,027,521 6.2E+6 3.4E+8

3DsqrexcUB2
mospar 24 269.2 5.2 13.9 -134.439 2E-7 2E-8 2E-10 246,277 1,215,623 9.6E+6 1.3E+8

mixpar 16 135.0 12.1 1.7 -134.442 7E-10 6E-9 6E-9 210,304 1,179,649 8.2E+6 1.4E+8

mixgpu 16 85.1 12.4 3.2 -134.442 7E-10 6E-9 6E-9 210,304 1,179,649 8.2E+6 1.4E+8

3DsqrfootLB
mospar 20 1571.4 7.6 51.3 -5.628 2E-8 3E-8 3E-8 914,109 1,347,406 1.6E+7 5.6E+8

mixpar 24 681.0 1.0 5.8 -5.629 3E-9 6E-9 6E-9 1,016,784 1,449,792 1.2E+7 4.9E+8

mixgpu 24 223.2 1.0 7.3 -5.629 4E-9 6E-9 6E-9 1,016,784 1,449,792 1.2E+7 4.9E+8

3DsqrfootUB
mospar 23 1071.4 7.7 27.1 -5.991 1E-8 3E-8 3E-8 394,485 2,287,918 7.9E+6 3.4E+8

mixpar 21 475.5 1.3 4.2 -5.991 7E-10 6E-9 6E-9 546,242 2,439,674 6.1E+6 3.8E+8

mixgpu 21 159.9 1.4 5.6 -5.991 7E-10 6E-9 6E-9 546,242 2,439,674 6.1E+6 3.8E+8

3DsqrfootUB2
mospar 18 264.2 4.7 12.5 -5.949 1E-8 3E-8 3E-8 221,686 1,453,115 8.9E+6 1.5E+8

mixpar 19 183.3 4.2 1.8 -5.949 5E-10 5E-9 5E-9 220,092 1,451,520 8.7E+6 1.7E+8

mixgpu 19 95.3 4.3 3.3 -5.949 5E-10 5E-9 5E-9 220,092 1,451,520 8.7E+6 1.7E+8

3DtunheadLB
mospar 22 1885.2 4.4 56.5 -22.737 4E-6 1E-6 1E-5 1,658,879 1,953,217 2.0E+7 6.6E+8

mixpar 24 978.9 1.9 9.4 -22.747 7E-9 9E-9 9E-9 1,662,720 1,956,097 2.0E+7 7.2E+8

mixgpu 27 388.6 2.2 11.0 -22.751 7E-9 1E-8 1E-8 1,662,720 1,956,097 2.0E+7 7.2E+8

3DtunheadUB
mospar 19 1071.9 3.4 24.9 -30.768 3E-8 3E-8 3E-8 948,024 3,367,442 1.0E+7 5.2E+8

mixpar 17 584.1 2.1 4.3 -30.741 9E-10 5E-9 5E-9 948,024 3,367,441 1.0E+7 5.9E+8

mixgpu 19 236.1 2.3 5.7 -30.774 1E-9 7E-9 7E-9 948,024 3,367,441 1.0E+7 5.9E+8

The performance profile shown in Figure 68 demonstrates that using a GPU to

accelerate the factorisation can significantly reduce the time compared with parallel

approaches on common multi-core processors. While not shown here, compared with

the original Mix8 solver on the medium problem set, Mixup8 with the GPU was 39 ×

faster in total runtime. Furthermore, it is apparent that significant improvements can be

achieved over commercial optimisation packages for solving large-scale finite element

limit analysis problems. Table 34 shows the total time on the problem sets by the

parallel solvers, with the serial Mixup8 performance included for comparison. Using the

GPU accelerated the IPM to 4.8× faster than the serial Mixup8 and over 4 × faster than

191

MOSEK with 4 threads on the large problem set. This increases to a speedup of 5.5× over

serial Mixup8 and 4.65× over MOSEK on the large three dimensional problems, and it is

expected that the performance benefit will increase with problem size beyond the large

problems tested here. The GPU results are over 2 × faster than the parallel MKL

version.

Table 34. Total solution time using parallel IPM solvers on the test set.

 mixup8 mospar mixpar mixgpu
Small 261.6 268.5 207.3 210.3

Medium 1,323.1 1,160.2 789.9 592.5
Large 8,616.8 7,290.2 3,951.7 1,784.0

Figure 68. Performance profile of parallel solvers on large problems.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8

%
 o

f p
ro

bl
em

s
so

lv
ed

 w
ith

in
 α

 o
f t

he
 b

es
t

α

mospar

mixpar

mixgpu

192

Figure 69. Total solution time versus number of constraints in original problem with

Mixup8 using the GPU with CHOLMOD.

0

50

100

150

200

250

300

350

400

450

 - 500,000 1,000,000 1,500,000 2,000,000 2,500,000

T
ot

al
 so

lu
tio

n
tim

e
(s

)

Problem constraints

2DfootingLB

2DfootingUB

2DtunnelLB

2DtunnelUB

3DsqrexcLB

3DsqrexcUB

3DsqrexcUB2

3DsqrfootLB

3DsqrfootUB

3DsqrfootUB2

3DtunheadLB

3DtunheadUB

193

Chapter 6 Conclusions and future work
This Thesis has developed and presented new methods to solve very large scale finite

element limit analysis problems efficiently, including those in three dimensions, and has

provided large performance gains on realistic problems against the latest state-of-the-art

packages available. Improvements to the solution of the ill-conditioned linear equations,

which are embedded in IPM formulations for FELA problems, including presolve

routines and different sparsity-preserving orderings, led to speedups of approximately

1.5× over the fastest available solver. This improvement increased to a speedup of over

4 × by exploiting modern highly parallel hardware. The ab initio development of a

range of advanced preconditioned iterative linear solvers was also pursued, but

ultimately proved unfruitful.

It was shown that, especially for three dimensional problems, the computational and

storage burden increases rapidly as the problem size increases for FELA, presenting a

major challenge to the analysis of larger and more complex designs. Comparing with

the best state-of-the-art commercial solvers, substantial efficiencies could be realised

through the use of a good presolve process eliminating free and fixed variables where

beneficial, dealing with dense columns, and utilising a high quality sparsity-preserving

nested dissection ordering in combination with a high-performance supernodal direct

solver. The presolve process identified free variables that could be eliminated without

incurring an increase in the number of non-zeros in the constraint matrix, which reduced

the size of the problem as well as avoided the computational difficulties presented by

the free variables. This elimination was performed by modifying an efficient sparse LU

factorisation with the ability to search for pivots by degree or actual fill-in. The free

variable elimination was supported with the efficient handling of any dense columns,

which often arose through the free variable elimination. This allowed the sparse

Cholesky factorisation to be completed without the dense columns and accounted for

them afterwards. The nested dissection (ND) ordering was found to provide superior

results in terms of the fill-in during factorisation at a small and amortisable increase in

time over the approximate minimum degree (AMD) method. Similarly, the supernodal

Cholesky factorisation provided a performance benefit over the symmetric multifrontal

method. The supernodal factorisation arranged all floating point computations so that

194

highly optimised dense linear algebra kernels could be used, avoiding the slower

accesses inherent in dealing with sparse matrices.

In seeking a reduction in the exhibited growth in computational demands as the

problems became larger, especially in three dimensions, a range of iterative solvers and

preconditioning approaches were tested. They were found to be very sensitive to the

ordering, the drop tolerance used, and the conditioning of the system. Although some of

the approaches reduced the storage demands and computational complexity, their lack

of robustness and uneven performance across the problem set, particularly when

approaching the optimal solution, made them unsuitable for further study. The reverse

Cuthill-McKee (RCM), Sloan, ND, and AMD permutations were compared using Ajiz-

Jenning’s robust incomplete Cholesky factorisation (RIC1) and preconditioned

conjugate gradient (PCG) on the Schur complement equation. Contrary to many

published results, the approximate minimum degree ordering was found to

approximately match or outperform the RCM and Sloan orderings on the test systems.

A new robust incomplete method (nuRIC1) was developed to exploit the fact that the

diagonal modifications of RIC1 reduce the rate of convergence and are not always

necessary to compute an incomplete factor. The new method instead restarts the

factorisation with an increased fraction of the diagonal modifications used if a non-

positive pivot was encountered in the aim of minimising the perturbation but allowing a

Cholesky factor to be computed. The two robust incomplete factorisation methods were

then tested against a conventional incomplete Cholesky with threshold-based dropping

and maximum fill control, and a second-order stabilised incomplete factorisation

(RIC2S). The three robust methods were preferable over the conventional incomplete

Cholesky, especially for the more ill-conditioned systems. Factorised sparse

approximate inverses with the RCM, Sloan, or AMD orderings were not found to be

competitive with the incomplete factorisations. The symmetric quasi-minimal residual

(SymQMR) solver was used to test the block inverse, block-diagonal Schur, block-

triangular Schur, block-diagonal augmented, and block-triangular augmented

preconditioners on the augmented equations, but underperformed the methods targeting

the Schur complement equation. A range of other methods aimed at reducing the impact

of the increasing ill-conditioning as the IPM nears optimality were also considered but

were not found to be worth developing beyond a preliminary stage. These methods

195

included the augmented Lagrangian Uzawa method, reduced augmented equations, and

an approach that sought a sparse non-singular basis in the constraint matrix associated

with small entries in the ()1,1 block of the augmented equations. The three best-

performing approaches, RIC1, nuRIC1, and RIC2S, were compared with the best

approach using a direct solver and were found to yield a reduction in the amount of

storage required, but the corresponding growth in computation time and the inability to

solve a number of the test problems, especially the lower bound problems, deemed them

unsuitable for further development.

The best performing direct method was then used as a basis to harness the powerful

features of modern parallel machines and add-on GPU devices. With the arrangement of

all floating point computations into dense algebra operations, high performance kernels

were exploited to reduce the time spent in computing the search direction at each

iteration of the IPM. These speedups were obtained with no loss in robustness or

solution quality.

6.1 Future work
While the methods outlined in this Thesis have provided a significant improvement over

existing approaches, it is likely that further gains can be made through further software

developments and better utilisation of available hardware.

The direct solvers which yield the greatest benefit are not designed to handle systems

that are not positive-definite. Two key approaches are likely to improve the robustness

of a direct solver. The first is to develop a highly parallel, symmetric indefinite solver

that uses 2 2× block pivots when a zero or negative pivot is encountered, even though

this leads to a non-static sparsity pattern and may result in significant non-zero growth

in the factor. The second, more simple, approach is to follow the approach of Stewart

[205] and modifying the pivot to a suitable value and then correct for it during the solve

phase. Careful consideration would need to be given to either of these approaches so as

not to destroy the parallelism exploited in the Cholesky solver.

Further benefit may be gained by seeking parallelism through the elimination tree. As

all nodes on the same level of the elimination tree are independent, the updates to each

of these nodes or supernodes may be carried out simultaneously. This will yield a high

196

number of independent tasks early on in the factorisation. The suggested approach

would also provide tasks for multiple computers and GPUs, and therefore would be

especially suitable for exploiting machines with greater parallel capability.

197

References
[1] D. C. Drucker, H. J. Greenberg, and W. Prager, “Extended limit design theorems for

continuous media,” Q. Appl. Math., vol. 9, pp. 381–389, 1952.
[2] D. C. Drucker and W. Prager, “Soil mechanics and plastic analysis or limit design,” Q.

Appl. Math., vol. 10, pp. 157–165, 1952.
[3] W.-F. Chen, Limit Analysis and Soil Plasticity. Elsevier, 1975.
[4] S. W. Sloan, “Geotechnical stability analysis,” Géotechnique, vol. 63, no. 7, pp. 531–

572, 2013.
[5] J. Lysmer, “Limit analysis of plane problems in soil mechanics,” J. Soil Mech. Found.

Div., vol. 96, no. SM4, pp. 1311–1334, 1970.
[6] G. B. Dantzig, Linear Programming and Extensions. Princeton, N.J.: Princeton

University Press, 1963.
[7] E. Anderheggen and H. Knöpfel, “Finite element limit analysis using linear

programming,” Int. J. Solids Struct., vol. 8, pp. 1413–1431, 1972.
[8] J. Pastor, “Analyse limite : détermination numerique de solutions statistiques completes.

Application au talus vertical,” J. Mécanique appliquée, vol. 2, no. 2, pp. 167–196, 1978.
[9] A. Bottero, R. Negre, J. Pastor, and S. Turgeman, “Finite element method and limit

analysis theory for soil mechanics problems,” Comput. Methods Appl. Mech. Eng., vol.
22, pp. 131–149, 1980.

[10] S. W. Sloan, “Lower bound limit analysis using finite elements and linear
programming,” Int. J. Numer. Anal. Methods Eng., vol. 12, pp. 61–77, 1988.

[11] S. W. Sloan, “Upper bound limit analysis using finite elements and linear
programming,” Int. J. Numer. Anal. Methods Eng., vol. 13, no. January 1987, pp. 263–
282, 1989.

[12] S. W. Sloan, “A steepest edge active set algorithm for solving sparse linear programming
problems,” Int. J. Numer. Methods Eng., vol. 26, pp. 2671–2685, 1988.

[13] S. W. Sloan and P. W. Kleeman, “Upper bound limit analysis using discontinuous
velocity fields,” Comput. Methods Appl. Mech. Eng., vol. 127, pp. 293–314, 1995.

[14] E. Christiansen and K. O. Kortanek, “Computation of the collapse state in limit analysis
using the LP primal affine scaling algorithm,” J. Comput. Appl. Math., vol. 34, pp. 47–
63, 1991.

[15] E. Christiansen, “Computation of limit loads,” Int. J. Numer. Methods Eng., vol. 17, pp.
1547–1570, 1981.

[16] N. Zouain, J. Herskovits, L. A. Borges, and R. A. Feijóo, “An iterative algorithm for
limit analysis with nonlinear yield functions,” Int. J. Solids Struct., vol. 30, no. 10, pp.
1397–1417, 1993.

[17] A. J. Abbo and S. W. Sloan, “A smooth hyperbolic approximation to the Mohr-Coulomb
yield criterion,” Comput. Struct., vol. 54, no. 3, pp. 427–441, 1995.

[18] A. V Lyamin, “Three-dimensional lower bound limit analysis using nonlinear
programming,” University of Newcastle, 1999.

[19] A. V Lyamin and S. W. Sloan, “Lower bound limit analysis using non-linear
programming,” Int. J. Numer. Methods Eng., vol. 55, no. 5, pp. 573–611, Oct. 2002.

[20] A. V Lyamin and S. W. Sloan, “Upper bound limit analysis using linear finite elements

198

and non-linear programming,” Int. J. Numer. Anal. Methods Geomech., vol. 26, no. 2,
pp. 181–216, Feb. 2002.

[21] J. Pastor, T.-H. Thai, and P. Francescato, “Interior point optimization and limit analysis:
an application,” Commun. Numer. Methods Eng., vol. 19, pp. 779–785, Sep. 2003.

[22] K. Krabbenhøft, A. V Lyamin, M. Hjiaj, and S. W. Sloan, “A new discontinuous upper
bound limit analysis formulation,” Int. J. Numer. Methods Eng., vol. 63, no. 7, pp. 1069–
1088, Jun. 2005.

[23] H. C. Suárez, “Computation of upper and lower bounds in limit analysis using second-
order cone programming and mesh adaptivity,” Massachusetts Institute of Technology,
2004.

[24] H. Ciria and J. Peraire, “Computation of upper and lower bounds in limit analysis using
second-order cone programming and mesh adaptivity,” in 9th ASCE Specialty
Conference on Probabilistic Mechanics and Structural Reliability, 2004, pp. 1–13.

[25] A. Makrodimopoulos and C. M. Martin, “Lower bound limit analysis of cohesive-
frictional materials using second-order cone programming,” Int. J. Numer. Methods
Eng., vol. 66, pp. 604–634, 2006.

[26] A. Makrodimopoulos and C. M. Martin, “Upper bound limit analysis using simplex
strain elements and second-order cone programming,” Int. J. Numer. Anal. Methods
Eng., vol. 31, pp. 835–865, 2007.

[27] E. D. Andersen and K. D. Andersen, “The MOSEK interior point optimizer for linear
programming: an implementation of the homogeneous algorithm,” in High performance
optimization, H. Frenk, K. Roos, T. Terlaky, and S. Zhang, Eds. Springer US, 2000, pp.
197–232.

[28] K. Krabbenhøft, A. V Lyamin, and S. W. Sloan, “Formulation and solution of some
plasticity problems as conic programs,” Int. J. Solids Struct., vol. 44, pp. 1533–1549,
2007.

[29] K. Krabbenhøft, A. V Lyamin, and S. W. Sloan, “Three-dimensional Mohr-Coulomb
limit analysis using semidefinite programming,” Commun. Numer. Methods Eng., vol.
24, pp. 1107–1119, 2008.

[30] C. M. Martin and A. Makrodimopoulos, “Finite-element limit analysis of Mohr-
Coulomb materials in 3D using semidefinite programming,” J. Eng. Mech., vol. 134, no.
4, pp. 339–347, 2008.

[31] M. V. da Silva and A. N. Antão, “A novel augmented Lagrangian-based formulation for
upper-bound limit analysis,” Int. J. Numer. Methods Eng., 2011.

[32] M. V. da Silva, A. N. Antão, and M. Vicente da Silva, “Upper bound limit analysis with
a parallel mixed finite element formulation,” Int. J. Solids Struct., vol. 45, no. 22–23, pp.
5788–5804, Nov. 2008.

[33] C. D. Bisbos and P. M. Pardalos, “Second-order cone and semidefinite representations of
material failure criteria,” J. Optim. Theory Appl., vol. 134, pp. 275–301, 2007.

[34] G. H. Golub and C. van Loan, Matrix Computations. The John Hopkins University
Press, 1996.

[35] K. Terzaghi, Theoretical Soil Mechanics. John Wiley and Sons, 1943.
[36] J. F. Sturm, “Implementation of interior point methods for mixed semidefinite and

second order cone optimization problems,” Optim. Methods Softw., vol. 17, no. 6, pp.
1105–1154, 2002.

[37] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behaviour, 60th

199

Anniv. New Jersey: Princeton University Press, 2007.
[38] V. Klee and G. J. Minty, “How good is the simplex method?,” Inequalities III. Academic

Press, New York, 1972.
[39] K. H. Borgwardt, The Simplex Method: A Probabilistic Analysis. Berlin: Spring Berlin

Heidelberg, 1987.
[40] S. J. Wright, Primal-Dual Interior point Methods. Philadelphia, PA: SIAM, 1997.
[41] Y. Nesterov and A. Nemirovskii, Interior point Polynomial Algorithms in Convex

Programming. Philadelphia: SIAM, 1994.
[42] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis,

Algorithms, and Engineering Applications. Philadelphia: SIAM, 2001.
[43] J. Peng, C. Roos, and T. Terlaky, Self-Regularity: A New Paradigm for Primal-Dual

Interior point Algorithms. Princeton: Princeton University Press, 2002.
[44] L. G. Khachiyan, “A polynomial algorithm in linear programming,” Sov. Math. Dokl.,

vol. 20, pp. 191–194, 1979.
[45] N. Karmarkar, “A new polynomial-time algorithm for linear programming,”

Combinatorica, vol. 4, no. 4, pp. 373–395, 1984.
[46] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, “On projected

Newton barrier methods for linear programming and an equivalence to Karmarkar’s
projective method,” Math. Program., vol. 36, pp. 183–209, 1986.

[47] C. Roos and J.-P. Vial, “A polynomial method of approximate centers for linear
programming,” Math. Program., vol. 54, pp. 295–305, 1992.

[48] J. Renegar, “A polynomial-time algorithm, based on Newton’s method, for linear
programming,” Math. Program., vol. 40, pp. 59–93, 1988.

[49] L. McLinden, “An analogue of moreau’s proximation theorem, with application to the
nonlinear complementarity problem,” Pacific J. Math., vol. 88, no. 1, pp. 101–162, 1980.

[50] N. Megiddo, “Pathways to the optimal set in linear programming,” in Progress in
Mathematical Programming, N. Megiddo, Ed. New York: Springer-Verlag, 1989, pp.
131–158.

[51] R. D. C. Monteiro and I. Adler, “Interior path following primal-dual algorithms. Part I:
Linear programming,” Math. Program., vol. 44, pp. 27–41, 1989.

[52] K. Tanabe, “Centered Newton method for mathematical programming,” in System
Modelling and Optimization, M. Iri and K. Yajima, Eds. Springer Berlin Heidelberg,
1988, pp. 197–206.

[53] M. Kojima, S. Mizuno, and A. Yoshise, “A primal-dual interior point algorithm for
linear programming,” in Progress in Mathematical Programming, New York: Springer-
Verlag, 1989, pp. 29–47.

[54] S. Mehrotra, “On the implementation of a primal-dual interior point method,” SIAM J.
Optim., vol. 2, no. 4, pp. 575–601, 1992.

[55] J. Gondzio, “Multiple centrality corrections in a primal-dual method for linear
programming,” Comput. Optim. Appl., vol. 6, pp. 137–156, 1996.

[56] J.-P. Haeberly, M. V Nayakkankuppam, and M. L. Overton, “Extending Mehrotra and
Gondzio higher order methods to mixed semidefinite-quadratic-linear programming,”
Optim. Methods Softw., vol. 11, no. 1–4, pp. 67–90, Jan. 1999.

[57] E. D. Andersen, C. Roos, and T. Terlaky, “On implementing a primal-dual interior point
method for conic quadratic optimization,” Math. Program., vol. 95, no. 2, pp. 249–277,

200

Feb. 2003.
[58] J. F. Sturm, “Using SeDuMi 1.02 A MATLAB toolbox for optimization over symmetric

cones,” Optim. Methods Softw., vol. 11, pp. 625–653, 1999.
[59] E. D. Andersen, K. D. Andersen, A. Ben-Tal, B. Borchers, R. M. Freund, K. Fujisawa,

M. Fukuda, Y. Lo Keung, M. Kojima, E. K. Lee, Z.-Q. Luo, T. Margalit, J. E. Mitchell,
S. Mizuno, K. Nakata, A. Nemirovski, Y. Nesterov, J. Peng, K. Roos, J. F. Sturm, T.
Terlaky, S. A. Vavasis, Y. Ye, and J. Zou, High performance optimization techniques.
Boston: Kluwer Academic Publishers, 1999.

[60] M. Kojima, N. Megiddo, T. Noma, and Y. Akiko, A Unified Approach to Interior Point
Algorithms for Linear Complementarity Problems, no. October. Springer-Verlag, 1991.

[61] Y. Ye, M. J. Todd, and S. Mizuno, “An $O(sqrt(n))$-iteration homogeneous and self-
dual linear programming algorithm,” Math. Oper. Res., vol. 19, no. 1, pp. 53–67, 1994.

[62] X. Xu, P.-F. Hung, and Y. Ye, “A simplified homogeneous and self-dual linear
programming algorithm and its implementation,” Ann. Oper. Res., vol. 62, pp. 151–171,
1996.

[63] M. J. Todd, “A study of search directions in primal-dual interior point methods for
semidefinite programming,” Optim. Methods Softw., vol. 11, pp. 517–534, 1999.

[64] I. Adler and F. Alizadeh, “Primal-dual interior point algorithms for convex quadratically
constrained and semidefinite optimization problems,” Rutgers Center for Operations
Research, Rutcor, 1995.

[65] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, “An interior point method
for semidefinite progamming,” SIAM J. Optim., vol. 6, pp. 342–361, 1996.

[66] Y. E. Nesterov and M. J. Todd, “Self-scaled barriers and interior point methods for
convex programming,” Math. Oper. Res., vol. 22, pp. 1–42, 1997.

[67] Y. E. Nesterov and M. J. Todd, “Primal-dual interior point methods for self-scaled
cones,” SIAM J. Optim., vol. 8, pp. 324–362, 1998.

[68] T. Tsuchiya, “A polynomial primal-dual path-following algorithm for second-order cone
programming,” The Institute for Statistical Mathematics, Tokyo, 1997.

[69] T. Tsuchiya, “A convergence analysis of the scaling-invariant primal-dual path-
following algorithms for second-order cone programming,” Optim. Methods Softw., vol.
11/12, pp. 141–182, 1999.

[70] K.-C. Toh and M. J. Todd, “Solving semidefinite-quadratic-linear programs using
SDPT3,” Optim. Methods Softw., vol. 11, pp. 545–581, 1999.

[71] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,”
Acta Numer., vol. 14, pp. 1–137, 2005.

[72] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems,
vol. 39, no. 159. New Jersey: Prentice-Hall Inc., 1981.

[73] C. Mészáros, “On free variables in interior point methods,” Optim. Methods Softw., vol.
4, pp. 121–139, 1998.

[74] K. Kobayashi, K. Nakata, and M. Kojima, “A Conversion of an SDP Having Free
Variables into the Standard Form SDP,” Tokyo, 2005.

[75] MOSEK ApS, “The MOSEK command line tool Version 7.0 (Revision 106),” Denmark,
2013.

[76] Z. Cai and K.-C. Toh, “Solving second order cone programming via a reduced
augmented system approach,” SIAM J. Optim., vol. 17, no. 3, pp. 711–737, 2006.

201

[77] M. F. Anjos and S. Burer, “On Handling Free Variables in Interior point Methods for
Conic Linear Optimization,” SIAM J. Optim., vol. 18, no. 4, pp. 1310–1325, Jan. 2008.

[78] M. Benzi, “Preconditioning techniques for large linear systems: A survey,” J. Comput.
Phys., vol. 182, pp. 418–477, 2002.

[79] I. S. Duff and C. Rutherford, “MA57 - A code for the solution of sparse symmetric and
indefinite systems,” ACM Trans. Math. Softw., vol. 30, no. 2, pp. 118–144, 2004.

[80] M. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,”
J. Res. Natl. Bur. Stand. (1934)., vol. 49, no. 6, pp. 409–436, 1952.

[81] K.-C. Toh, M. J. Todd, and R. H. Tutuncu, “SDPT3 — a Matlab software package for
semidefinite programming,” Math. Program., vol. 95, pp. 189–217, 2003.

[82] R. W. Freund and N. M. Nachtigal, “A new Krylov subspace method for symmetric
indefinite linear systems,” in Proceedings of the 14th IMACS World Congress, 1994.

[83] C. Mészáros, “On numerical issues of interior point methods,” SIAM J. Matrix Anal.
Appl., vol. 30, no. 1, pp. 223–235, 2008.

[84] I. S. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices. Oxford
University Press, 1986.

[85] T. A. Davis, Direct Methods for Sparse Linear Systems. Philadelphia: Society for
Industrial and Applied Mathematics, 2006.

[86] L. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997.
[87] E. Polizzi and A. H. Sameh, “A parallel hybrid banded system solver: the SPIKE

algorithm,” Parallel Comput., vol. 32, pp. 177–194, 2006.
[88] C. Ashcraft, R. Grimes, and J. Lewis, “Accurate symmetric indefinite linear equation

solvers,” SIAM J. Matrix Anal. Appl., vol. 20, no. 2, pp. 513–561, 1998.
[89] R. C. Whaley, A. Petitet, and Jack, “Automated empirical optimization of software and

the ATLAS project,” Parallel Comput., vol. 27, no. 1–2, pp. 3–35, 2001.
[90] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, “AUGEM: Automatically Generate High

Performance Dense Linear Algebra Kernels on x86 CPUs,” Proc. Int. Conf. High
Perform. Comput. Networking, Storage Anal., pp. 1–12, 2013.

[91] D. J. Rose, R. E. Tarjan, and G. S. Lueker, “Algorithmic aspects of vertex elimination on
graphs,” SIAM J. Comput., vol. 5, no. 2, pp. 266–283, 1976.

[92] R. Schreiber, “A New Implementation of Sparse Gaussian Elimination,” ACM Trans.
Math. Softw., vol. 8, no. 3, pp. 256–276, 1982.

[93] J. R. Gilbert and T. Peierls, “Sparse partial pivoting in time proportional to arithmetic
operations,” SIAM J. Sci. Stat. Comput., vol. 9, no. 5, pp. 862–874, 1988.

[94] S. Parter, “The use of linear graphs in Gauss elimination,” SIAM Rev., vol. 3, no. 2, pp.
119–130, 1961.

[95] T. A. Davis and W. W. Hager, “Dynamic supernodes in sparse Cholesky
update/downdate and triangular solves,” ACM Trans. Math. Softw., vol. 35, no. 4, 2009.

[96] B. M. Irons, “A frontal solution program for finite element analysis,” Int. J. Numer.
Methods Eng., vol. 2, pp. 5–32, 1970.

[97] I. S. Duff and J. K. Reid, “The multifrontal solution of indefinite sparse symmetric linear
equations,” ACM Trans. Math. Softw., vol. 9, no. 3, pp. 302–325, 1983.

[98] I. S. Duff, “Parallel implementation of multifrontal schemes,” Parallel Comput., vol. 3,
pp. 193–204, 1986.

202

[99] P. R. Amestoy, I. Duff, and J. L’Excellent, “Multifrontal parallel distributed symmetric
and unsymmetric solvers,” Comput. Methods Appl. Mech. Eng., vol. 184, pp. 501–520,
2000.

[100] O. Schenk and K. Gärtner, “Solving unsymmetric sparse systems of linear equations
with PARDISO,” Futur. Gener. Comput. Syst., vol. 20, pp. 475–487, 2004.

[101] N. I. M. Gould, Y. Hu, and J. A. Scott, “A numerical evaluation of sparse direct solvers
for the solution of large sparse symmetric linear systems of equations,” Council for the
Central Labaratory of the Research Councils, 2005.

[102] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate,” ACM
Trans. Math. Softw., vol. 35, no. 3, 2008.

[103] I. The MathWorks, “MATLAB and Statistics Toolbox Release 2012b.” Natick,
Massachusetts.

[104] C. Mészáros, “Fast Cholesky factorization for interior point methods of linear
programming,” Comput. Math. with Appl., vol. 31, no. 4–5, pp. 49–54, 1996.

[105] N. I. M. Gould, J. A. Scott, and Y. Hu, “A numerical evaluation of sparse direct solvers
for the solution of large sparse symmetric linear systems of equations,” ACM Trans.
Math. Softw., vol. 33, no. 2, Jun. 2007.

[106] F. Dobrian, G. Kumfert, and A. Pothen, “The design of sparse direct solvers using
object-oriented techniques,” in Advances in Software Tools for Scientific Computing, H.
P. Langtangen, A. M. Brauset, and E. Quak, Eds. 2000, pp. 89–131.

[107] H. van der Vorst, Iterative Krylov Methods for Large Linear Systems. Cambridge
University Press, 2003.

[108] P. Matstoms, “Sparse QR factorization in MATLAB,” ACM Trans. Math. Softw., vol.
20, no. 1, pp. 136–159, 1994.

[109] P. R. Amestoy, I. S. Duff, and C. Puglisi, “Multifrontal QR factorization in a
multiprocessor environment,” Numer. Linear Algebr. with Appl., vol. 3, no. 4, pp. 275–
300, 1996.

[110] M. Yannakakis, “Computing the minimum fill-in is NP-Complete,” SIAM J. Algebr.
Discret. Methods, vol. 2, no. 1, pp. 77–79, 1981.

[111] H. M. Markowitz, “The elimination form of the inverse and its application to linear
programming,” Manage. Sci., vol. 3, no. 3, pp. 255–269, 1957.

[112] A. George and J. W. H. Liu, “The evolution of the minimum degree ordering algorithm,”
SIAM Rev., vol. 31, no. 1, pp. 1–19, 1989.

[113] P. R. Amestoy, Enseeiht-Irit, T. A. Davis, and I. S. Duff, “Algorithm 837: AMD, An
approximate minimum degree ordering algorithm,” ACM Trans. Math. Softw., vol. 30,
no. 3, pp. 381–388, 2004.

[114] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum degree ordering
algorithm,” SIAM J. Matrix Anal. Appl., vol. 17, no. 4, pp. 886–905, 1996.

[115] C. Mészáros, “The efficient implementation of interior point methods for linear
programming and their applications,” Eötvös Loránd University of Sciences, 1996.

[116] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, Jan. 1998.

[117] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in
Proceedings of the 24th National Conference of the Association for Computing

203

Machinery, 1969, pp. 157–172.
[118] J. A. George, “Computer implementation of the finite-element method,” Stanford

University, 1971.
[119] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels,” University of

California, Berkeley, 2003.
[120] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhour, R.

Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd ed. SIAM, 1994.

[121] D. Ruizf, M. Arioli, I. S. Duff, and D. Ruiz, “Stopping criteria for iterative solvers,”
SIAM J. Matrix Anal. Appl., vol. 13, no. 1, pp. 138–144, 1992.

[122] R. D. Skeel, “Iterative refinement implies numerical stability for Gaussian elimination,”
Math. Comput., vol. 35, no. 151, pp. 817–832, 1980.

[123] A. Greenbaum, Iterative Methods for Solving Linear Systems. SIAM, 1997.
[124] S. Mizuno and F. Jarre, “Global and polynomial-time convergence of an infeasible

interior point algorithm using inexact computation,” Math. Program., vol. 84, pp. 105–
122, 1999.

[125] R. W. Freund, F. Jarre, and S. Mizuno, “Convergence of a class of inexact interior point
algorithms for linear programs,” Math. Oper. Res., vol. 24, pp. 105–122, 1999.

[126] J. Korzak, “Convergence analysis of inexact infeasible-interior point algorithms for
solving linear programming problems,” SIAM J. Optim., vol. 11, pp. 133–148, 2000.

[127] R. D. S. Monteiro and J. W. O’Neal, “Convergence analysis of long-step primal-dual
infeasible interior point LP algorithm based on iterative linear solvers,” School of ISyE,
Georgia Institute of Technology, 2003.

[128] G. Al-jeiroudi, “On Inexact Newton Directions in Interior Point Methods for Linear
Optimization,” University of Edinburgh, 2009.

[129] G. Al-Jeiroudi, J. Gondzio, and J. Hall, “Preconditioning indefinite systems in interior
point methods for large scale linear optimisation,” Optim. Methods Softw., vol. 23, no. 3,
pp. 345–363, 2008.

[130] W. Wang and D. O’Leary, “Adaptive use of iterative methods in predictor-corrector
interior point methods for linear programming,” Numer. Algorithms, vol. 25, pp. 387–
406, 2000.

[131] L. Bergamaschi, J. Gondzio, M. Venturin, and G. Zilli, “Inexact constraint
preconditioners for linear systems arising in interior point methods,” Comput. Optim.
Appl., vol. 36, pp. 137–147, 2007.

[132] M. Kojima, M. Shida, and S. Shindoh, “Search directions in the SDP and the monotone
SDLCP: Generalization and inexact computation,” Math. Program., vol. 85, pp. 51–80,
1999.

[133] G. Zhou and K.-C. Toh, “Polynomiality of an inexact infeasible interior point algorithm
for semidefinite programming,” Math. Program., vol. 99, pp. 261–282, 2004.

[134] K.-C. Toh, “Solving large scale semidefinite programs via an iterative solver on the
augmented systems,” SIAM J. Optim., vol. 14, no. 3, pp. 670–698, 2003.

[135] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, “Reorthogonalization and
stable algorithms for updating the Gram-Schmidt QR factorization,” Math. Comput., vol.
30, no. 136, pp. 772–795, 1976.

[136] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, 2003.

204

[137] C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators,” J. Res. Natl. Bur. Stand. (1934)., vol. 45, no. 4, pp.
255–282, 1950.

[138] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Non-linear
Programming. Stanford: Stanford University Press, 1958.

[139] H. C. Elman and G. H. Golub, “Inexact and preconditioned {U}zawa algorithms for
saddle point problems,” SIAM J. Numer. Anal., vol. 31, no. 6, pp. 1645–1661, 1994.

[140] S.-X. Miao, “A modified inexact Uzawa algorithm for generalized saddle point
problems,” Int. J. Comput. Math. Sci., vol. 4, no. 7, pp. 349–351, 2010.

[141] Y. Saad and M. Schultz, “GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp. 856–869,
1986.

[142] A. Greenbaum and Z. Strakoš, “Predicting the behavior of finite precision Lanczos and
conjugate gradient computations,” SIAM J. Matrix Anal. Appl., vol. 13, no. 1, pp. 121–
137, 1992.

[143] H. S. Dollar, N. I. M. Gould, W. H. A. Schilders, and A. J. Wathen, “Implicit-
factorization preconditioning and iterative solvers for regularized saddle-point systems,”
SIAM J. Matrix Anal. Appl., vol. 28, no. 1, pp. 170–189, 2006.

[144] Y. Saad, M. Yeung, J. Erhel, and F. GuyoMarc’h, “A deflated version of the Conjugate
Gradient algorithm,” SIAM J. Sci. Comput., vol. 21, no. 5, pp. 1909–1926, 2000.

[145] C. C. Paige and M. A. Saunders, “Solution of sparse indefinite systems of linear
equations,” SIAM J. Numer. Anal., vol. 12, no. 4, pp. 617–629, 1975.

[146] C. C. Paige, “Computational variants of the Lanczos method for the eigenproblem,” J.
Inst. Math. its Appl., vol. 10, pp. 373–381, 1972.

[147] G. L. G. Sleijpen, H. A. van der Vorst, and J. A. N. Modersitzki, “Differences in the
effects of rounding errors in Krylov solvers for symmetric indefinite linear systems,”
SIAM J. Matrix Anal. Appl., vol. 22, no. 3, pp. 726–751, 2000.

[148] M. Embree, “The Tortoise and the Hare restart GMRES,” SIAM Rev., vol. 45, no. 2, pp.
259–266, 2003.

[149] Y. Saad, “A flexible inner-outer preconditioned GMRES algorithm,” SIAM J. Sci.
Comput., vol. 14, no. 2, pp. 461–469, 1993.

[150] H. Walker and L. Zhou, “A simpler GMRES,” Numer. Linear Algebr. with Appl., vol. 1,
no. 6, pp. 571–581, 1994.

[151] A. H. Baker, E. R. Jessup, and T. A. Manteuffel, “A technique for accelerating the
convergence of restarted GMRES,” SIAM J. Matrix Anal. Appl., vol. 26, no. 4, pp. 962–
984, 2005.

[152] H. Walker, “Implementation of the GMRES method using Householder
transformations,” SIAM J. Sci. Stat. Comput., vol. 9, no. 1, pp. 152–163, 1988.

[153] H. van der Vorst and C. Vuik, “The superlinear convergence behaviour of GMRES,” J.
Comput. Appl. …, vol. 48, pp. 327–341, 1993.

[154] D. M. Young and K. Jea, “Generalized conjugate-gradient acceleration of
nonsymmetrizable iterative methods,” Linear Algebra Appl., vol. 34, pp. 159–194, 1980.

[155] O. Axelsson, “Conjugate Gradient type methods for unsymmetric and inconsistent
systems of linear equations,” Linear Algebra Appl., vol. 29, pp. 1–16, 1980.

[156] A. Greenbaum, V. Pták, and Z. Strakoš, “Any nonincreasing convergence curve is

205

possible for GMRES,” SIAM J. Matrix Anal. …, vol. 17, no. 3, pp. 465–469, 1996.
[157] Y. Saad, “Further analysis of minimum residual iterations,” Minnesota Supercomputer

Institute, University of Minnesota, 1997.
[158] R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal residual method for non-

Hermitian linear systems,” Numer. Math., vol. 60, pp. 315–339, 1991.
[159] C. Lanczos, “Solution of systems of linear equations by minimized iterations,” J. Res.

Natl. Bur. Stand. (1934)., vol. 49, no. 1, pp. 33–53, 1952.
[160] N. M. Nachtigal, “A look-ahead variant of the Lanczos algorithm and its application to

the Quasi-Minimal Residual method for non-Hermitian linear systems,” Massachusetts
Institute of Technology, 1991.

[161] R. W. Freund and N. M. Nachtigal, “An implementation of the QMR method based on
coupled two-term recurrences,” Research Institute for Advanced Computer Science,
NASA Ames Research Center, 1992.

[162] R. W. Freund, “A transpose-free {Q}uasi-{M}inimal {R}esidual algorithm for non-
{H}ermitian linear systems,” SIAM J. Sci. Comput., vol. 14, no. 2, pp. 470–482, 1993.

[163] K.-K. Phoon, K.-C. Toh, S. Chan, and F. Lee, “An efficient diagonal preconditioner for
finite element solution of Biot’s consolidation equations,” Int. J. Numer. Methods Eng.,
vol. 55, pp. 377–400, 2002.

[164] G. Gambolati, M. Ferronato, and C. Janna, “Preconditioners in computational
geomechanics: A survey,” Int. J. Numer. Anal. Methods Eng., vol. 35, pp. 980–996,
2011.

[165] R. Weiss, “Error-minimizing Krylov subspace methods,” SIAM J. Sci. Comput., vol. 15,
no. 3, pp. 511–527, 1994.

[166] H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 13, no.
2, pp. 631–644, 1992.

[167] P. Sonneveld, “CGS, A fast Lanczos-type solver for nonsymmetric linear systems,”
SIAM J. Sci. Stat. Comput., vol. 10, no. 1, pp. 36–52, 1989.

[168] D. Fokkema, G. Sleijpen, and H. van der Vorst, “Generalized Conjugate Gradient
Squared,” J. Comput. Appl. Math., vol. 71, no. 1, pp. 125–146, 1996.

[169] G. L. G. Sleijpen, H. van der Vorst, and D. R. Fokkema, “BiCGstab(l) and other hybrid
Bi-CG methods,” Numer. Algorithms, vol. 7, pp. 75–109, 1994.

[170] S.-L. Zhang, “GPBi-CG: Generalized product-type methods based on Bi-CG for solving
nonsymmetric linear systems,” SIAM J. Sci. Comput., vol. 18, no. 2, pp. 537–551, 1997.

[171] K. Chen, Matrix Preconditioning Techniques and Applications. Cambridge University
Press, 2005.

[172] E. Boman and B. Hendrickson, “Support theory for preconditioning,” SIAM J. Matrix
Anal. Appl., vol. 25, no. 3, pp. 694–717, 2003.

[173] M. Bern, J. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo, “Support-graph
preconditioners,” SIAM J. Matrix Anal. Appl., vol. 27, no. 4, pp. 930–951, 2006.

[174] S. Bocanegra, F. F. Campos, and A. R. L. Oliveira, “Using a hybrid preconditioner for
solving large-scale linear systems arising from interior point methods,” Comput. Optim.
Appl., vol. 36, pp. 149–164, 2007.

[175] J. A. Meijerink and H. A. van der Vorst, “An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix,” Math. Comput., vol. 31, no.

206

137, pp. 148–162, 1977.
[176] Y. Saad, “ILUT: A dual threshold incomplete LU factorization,” Numer. Linear Algebr.

with Appl., vol. 1, no. 4, pp. 387–402, 1994.
[177] E. Chow and Y. Saad, “Experimental study of ILU preconditioners for indefinite

matrices,” Minnesota Supercomputer Institute, University of Minnesota, 1997.
[178] M. Bollhöfer, “A robust and efficient ILU that incorporates the growth of the inverse

triangular factors,” SIAM J. Sci. Comput., vol. 25, no. 1, pp. 86–103, 2003.
[179] Z.-Z. Bai, I. S. Duff, and A. J. Wathen, “A class of incomplete orthogonal factorization

methods. I: Methods and theories,” BIT, vol. 41, no. 1, pp. 53–70, 2001.
[180] Y. Saad, “Preconditioning techniques for nonsymmetric and indefinite linear systems,”

J. Comput. Appl. Math., vol. 24, pp. 89–105, 1988.
[181] N. I. M. Gould and J. A. Scott, “Sparse approximate-inverse preconditioners using norm-

minimization techniques,” SIAM J. Sci. Comput., vol. 19, no. 2, pp. 605–625, 1998.
[182] M. J. Grote and T. Huckle, “Parallel preconditioning with sparse approximate inverses,”

SIAM J. Sci. Comput., vol. 18, no. 3, pp. 838–853, 1997.
[183] M. Benzi and M. Tůma, “A sparse approximate inverse preconditioner for nonsymmetric

linear systems,” SIAM J. Sci. Comput., vol. 19, no. 3, pp. 968–994, 1998.
[184] L. Kolotilina and A. Yeremin, “Factorized sparse approximate inverse preconditioners I.

Theory,” SIAM J. Matrix Anal. Appl., vol. 14, no. 1, pp. 45–58, 1993.
[185] M. Benzi and M. Tůma, “A comparative study of sparse approximate inverse

preconditioners,” Appl. Numer. Math., vol. 30, pp. 305–340, 1999.
[186] Y. A. Kuznetsov, “Efficient preconditioner for mixed finite element methods on

nonmatching meshes,” Russ. J. Numer. Anal. Math. Model., vol. 19, no. 2, pp. 163–172,
2004.

[187] M. Murphy, G. H. Golub, and A. Wathen, “A note on preconditioning for indefinite
linear systems,” SIAM J. Sci. Comput., vol. 21, no. 6, pp. 1969–1972, 2000.

[188] L. Bergamaschi, J. Gondzio, and G. Zilli, “Preconditioning indefinite systems in interior
point methods for optimization,” Comput. Optim. Appl., vol. 28, pp. 149–171, 2004.

[189] C. Keller, N. I. M. Gould, and A. J. Wathen, “Constraint preconditioning for indefinite
linear systems,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1300–1317, 2000.

[190] J. C. Haws and C. Meyer, “Preconditioning KKT systems,” 2001.
[191] Z.-Z. Bai, M. Ng, and Z.-Q. Wang, “Constraint preconditioners for symmetric indefinite

matrices,” SIAM J. Matrix Anal. Appl., vol. 31, no. 2, pp. 410–433, 2009.
[192] J. C. Haws, “Preconditioning KKT systems,” North Carolina State University, 2002.
[193] M. Rozlozník and V. Simoncini, “Krylov Subspace Methods for Saddle Point Problems

with Indefinite Preconditioning,” SIAM J. Matrix Anal. Appl., vol. 24, no. 2, pp. 368–
391, Jan. 2002.

[194] G. Gambolati, G. Pini, and M. Ferronato, “Numerical performance of projection methods
in finite element consolidation models,” Int. J. Numer. Anal. Methods Geomech., vol. 25,
no. 14, pp. 1429–1447, Dec. 2001.

[195] M. Ferronato, C. Janna, and G. Gambolati, “Mixed constraint preconditioning in
computational contact mechanics,” Comput. Methods Appl. Mech. Eng., vol. 197, pp.
3922–3931, 2008.

[196] M. Ferronato, L. Bergamaschi, and G. Gambolati, “Performance and robustness of block

207

constraint preconditioners in finite element coupled consolidation problems,” Int. J.
Numer. Methods Eng., vol. 81, pp. 381–402, 2010.

[197] H. Dollar, N. I. M. Gould, M. Stoll, and A. Wathen, “Preconditioning saddle-point
systems with applications in optimization,” SIAM J. Sci. Comput., vol. 32, no. 1, pp.
249–270, 2010.

[198] G. H. Golub and C. Greif, “On solving block-structured indefinite linear systems,” SIAM
J. Sci. Comput., vol. 24, no. 6, pp. 2076–2092, 2003.

[199] T. Rees and C. Greif, “A preconditioner for linear systems arising from interior point
optimization methods,” SIAM J. Sci. Comput., vol. 29, no. 5, pp. 1992–2007, 2007.

[200] Y. Zeng and C. Li, “A new preconditioner with two variable relaxation parameters for
saddle point linear systems with highly singular (1,1) blocks,” Am. J. Comput. Math.,
vol. 1, pp. 252–255, 2011.

[201] J.-S. Chai and K.-C. Toh, “Preconditioning and iterative solution of symmetric indefinite
linear systems arising from interior point methods for linear programming,” Comput.
Optim. Appl., vol. 36, no. 2–3, pp. 221–247, Mar. 2007.

[202] S. W. Sloan, “A FORTRAN program for profile and wavefront reduction,” Int. J.
Numer. Methods Eng., vol. 28, no. 11, pp. 2651–2679, 1989.

[203] R. Bridson and W.-P. Tang, “A structural diagnosis of some IC orderings,” SIAM J. Sci.
Comput., vol. 22, no. 5, pp. 1527–1532, 2000.

[204] M. Benzi and M. Tůma, “Orderings for factorized sparse approximate inverse
preconditioners,” SIAM J. Sci. Comput., vol. 21, no. 5, pp. 1851–1868, 2000.

[205] G. W. Stewart, “Modifying pivot elements in Gaussian elimination,” Math. Comput.,
vol. 28, no. 126, pp. 537–542, 1974.

[206] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance
profiles,” Math. Program., vol. 91, no. 2, pp. 201–213, 2002.

[207] E. D. Andersen, “On implementing a primal-dual interior point method for conic
quadratic optimization,” 2000.

[208] E. D. Andersen and K. D. Andersen, “Presolving in linear programming,” Math.
Program., vol. 71, pp. 221–245, 1995.

[209] J. Gondzio, “Presolve analysis of linear programs prior to applying an interior point
method,” Geneva, Switzerland, 1994.

[210] I. S. Duff, “MA28 - A set of Fortran subroutines for sparse unsymmetric linear
equations,” Oxfordshire, 1980.

[211] Z. Zlatev, “On some pivotal strategies in Gaussian elimination by sparse technique,”
SIAM J. Numer. Anal., vol. 17, no. 1, pp. 18–30, 1980.

[212] E. D. Andersen, J. Gondzio, C. Meszaros, and X. Xu, “Implementation of interior point
methods for large scale linear programming,” in Interior point methods of mathematical
programming, Kluwer Academic Publishers, 1996, pp. 189–252.

[213] K. D. Andersen, “A modified Schur-complement method for handling dense columns in
interior point methods for linear programming,” ACM Trans. Math. Softw., vol. 22, no.
3, pp. 348–356, 1996.

[214] M. Arioli, J. W. Demmel, and I. S. Duff, “Solving Sparse Linear Systems with Sparse
Backward Error,” SIAM J. Matrix Anal. Appl., vol. 10, no. 2, pp. 165–190, 1989.

[215] A. George and J. W. Liu, “An optimal algorithm for symbolic factorization of symmetric
matrices,” SIAM J. Comput., vol. 9, no. 3, pp. 583–593, 1980.

208

[216] “HSL. A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk/.” 2011.

[217] M. A. Ajiz and A. Jennings, “A robust incomplete Choleski-Conjugate Gradient
algorithm,” Int. J. Numer. Methods Eng., vol. 20, no. April 1983, pp. 949–966, 1984.

[218] I. E. Kaporin, “High quality preconditioning of a general symmetric positive definite
matrix based on its UTU+UTR+RTU-decomposition,” Numer. Linear Algebr. with Appl.,
vol. 5, no. April 1997, pp. 483–509, 1998.

[219] M. Benzi and M. Tůma, “A robust incomplete factorization preconditioner for positive
definite matrices,” Numer. Linear Algebr. with Appl., vol. 10, no. 5–6, pp. 385–400, Jul.
2003.

[220] T. A. Manteuffel, “An incomplete factorisation technique for positive definite linear
systems,” Math. Comput., vol. 34, no. 150, pp. 473–497, Apr. 1980.

[221] C. Janna, M. Ferronato, F. Sartoretto, and G. Gambolati, “FSAIPACK: A software
package for high-performance factored sparse approximate inverse preconditioning,”
ACM Trans. Math. Softw., vol. 41, no. 2, pp. 10–26, 2015.

[222] K.-C. Toh, K.-K. Phoon, and S.-H. Chan, “Block preconditioners for symmetric
indefinite linear systems,” Int. J. Numer. Methods Eng., vol. 60, pp. 1361–1381, 2004.

[223] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The Landscape of
Parallel Computing Research: A View from Berkeley,” 2006.

[224] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, 4th ed.
Massachusetts: Elsevier, 2012.

[225] M. Yamashita, K. Fujisawa, and M. Kojima, “SDPARA: SemiDefinite Programming
Algorithm paRAllel version,” Parallel Comput., vol. 29, no. 8, pp. 1053–1067, Aug.
2003.

[226] A. Gupta, S. Koric, and T. George, “Sparse matrix factorization on massively parallel
computers,” in SC ’09: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009.

[227] A. Gupta, “A shared- and distributed-memory parallel general,” Appl. Algebr. Eng.
Commun. Comput., vol. 18, no. 3, pp. 263–277, 2007.

[228] L. Prandtl, “Über die Härte plasticher Körper,” Nachrichten von der K. Gesellschaft der
Wissenschaften, Göttingen Math. Phys. Klasse, pp. 74–85, 1920.

[229] E. H. Davis, M. J. Gunn, R. J. Mair, and H. N. Seneviratne, “The stability of shallow
tunnels and underground openings in cohesive material,” Géotechnique, vol. 30, no. 4,
pp. 397–416, 1980.

[230] D. W. Wilson, A. J. Abbo, S. W. Sloan, and A. V Lyamin, “Undrained stability of a
circular tunnel where the shear strength increases linearly with depth,” Canadian
Geotechnical Journal, vol. 48, no. 9. pp. 1328–1342, Sep-2011.

[231] K. Yamamoto, A. V Lyamin, D. W. Wilson, S. W. Sloan, and A. J. Abbo, “Bearing
capacity of cohesive-frictional soils with a shallow circular tunnel,” 2010.

[232] K. Yamamoto, A. V Lyamin, D. W. Wilson, S. W. Sloan, and A. J. Abbo, “Stability of a
circular tunnel in cohesive-frictional soil subjected to surcharge loading,” Comput.
Geotech., vol. 38, no. 4, pp. 504–514, Jun. 2011.

[233] A. Klar, A. S. Osman, and M. Bolton, “2D and 3D upper bound solutions for tunnel
excavation using ‘elastic’ flow fields,” Int. J. Numer. Anal. Methods Geomech., vol. 31,
pp. 1367–1374, 2007.

209

[234] H. S. Yu, S. W. Sloan, and P. W. Kleeman, “A quadratic element for upper bound limit
analysis,” Eng. Comput., vol. 11, no. 3, pp. 195–212, 1994.

[235] J. Pastor and S. Turgeman, “Limit analysis in axisymmetrical problems: numerical
determination of complete statical solutions,” Int. J. Mech. Sci., vol. 24, no. 2, pp. 95–
117, 1982.

[236] S. Turgeman and J. Pastor, “Limit analysis: A linear formulation of the kinematic
approach for axisymmetric mechanic problems,” Int. J. Numer. Anal. Methods Eng., vol.
6, pp. 109–128, 1982.

[237] R. T. Shield and D. C. Drucker, “The application of limit analysis to punch-indentation
problems,” J. Appl. Mech. ASME, vol. 75, pp. 453–460, 1953.

[238] P. A. Vermeer, N. Ruse, and T. Marcher, “Tunnel Heading Stability in Drained Ground,”
FELSBAU - Rock Soil Eng., vol. 20, no. 6, pp. 8–18, 2002.

	Acknowledgements
	Abstract
	Notation
	Table of contents
	Chapter 1 Introduction
	1.2 Finite element limit analysis
	1.2.1 History of finite element limit analysis
	1.2.2 Finite element limit analysis formulation
	1.2.2.1 Common yield criteria as conic constraints
	1.2.2.1.1 The Mohr-Coulomb criterion
	1.2.2.1.2 Drucker-Prager yield criterion

	1.2.2.2 Lower bound formulation
	1.2.2.3 Upper bound formulation

	1.2.3 The FELA optimisation problem

	1.3 Interior point methods for conic programming
	1.3.1 Background
	1.3.2 The search direction in interior point methods
	1.3.3 Handling free variables

	Chapter 2 Computing the search direction in IPMs
	2.1 Direct solution schemes
	2.1.1 Gaussian elimination
	2.1.1.1 Direct method overview

	2.1.2 Orthogonal factorisation
	2.1.3 Reordering

	2.2 Inexact search directions in IPMs for conic optimisation
	2.2.1 The relative performance of basic linear algebra operations
	2.2.2 Iterative method termination
	2.2.3 Iterative method termination within IPMs

	2.3 Iterative solution schemes
	2.3.1 Stationary methods
	2.3.2 Ritz-Galerkin approach
	2.3.2.1 Conjugate Gradients

	2.3.3 Minimal norm residual approach
	2.3.3.1 Minimal Residual
	2.3.3.2 Generalised Minimal Residual

	2.3.4 Petrov-Galerkin approach
	2.3.4.1 Quasi-Minimal Residual

	2.3.5 Minimal norm error approach
	2.3.5.1 SYMMLQ

	2.3.6 Hybrid methods
	2.3.6.1 Stabilised Bi-Conjugate Gradients

	2.4 Preconditioners for iterative linear solvers
	2.4.1 Matrix splitting and incomplete factorisation preconditioners
	2.4.1.1 Jacobi preconditioner
	2.4.1.2 Incomplete decompositions

	2.4.2 Approximate inverses
	2.4.2.1 SPAI
	2.4.2.2 AINV and FSAI

	2.4.3 Block structured preconditioners
	2.4.3.1 Block diagonal preconditioners
	2.4.3.2 Block triangular preconditioner
	2.4.3.3 Constraint preconditioners
	2.4.3.4 Analytic inverse
	2.4.3.5 Augmented preconditioner
	2.4.3.6 Reduced augmented equations

	2.4.4 Matrix permutation and ordering

	Chapter 3 Performance of conventional approaches on some FELA problems
	3.1 Test problems
	3.1.1 Two-dimensional problems
	3.1.1.1 Strip footing
	3.1.1.2 Circular tunnel in cohesive material

	3.1.2 Three-dimensional problems
	3.1.2.1 Square excavation in cohesive-frictional material
	3.1.2.2 Square footing on weightless cohesive material
	3.1.2.3 Tunnel heading in cohesive-frictional material

	3.1.3 Problem summary

	3.2 Compared solvers
	3.2.1 MOSEK
	3.2.2 Gurobi
	3.2.3 SDPT3 4.0
	3.2.4 SeDuMi 1.31
	3.2.5 Mix8

	3.3 Comparison results
	3.3.1 Smaller problems
	3.3.2 Finer mesh problems
	3.3.3 Comparison summary

	3.4 Improving on the basic IPM implementation
	3.4.1 Choice of direct method
	3.4.2 Matrix reordering
	3.4.3 Dealing with free variables
	3.4.4 Presolving
	3.4.4.1 Eliminating free variables
	3.4.4.2 Handling dense columns
	3.4.4.3 Eliminating fixed variables subject to a conic constraint
	3.4.4.4 Presolve results

	3.4.5 Improvement summary

	Chapter 4 Iterative solver approaches
	4.1 Solving the normal equations
	4.1.1 Test problems
	4.1.2 Choices related to the iterative solver
	4.1.2.1 Solver parameters

	4.1.3 Preconditioning the normal equations
	4.1.3.1 Comparing the symmetric Krylov subspace solvers
	4.1.3.2 The effect of matrix permutations
	4.1.3.3 Incomplete factorisation comparison
	4.1.3.3.1 Implementation of the incomplete factorisations
	4.1.3.3.2 Incomplete Cholesky
	4.1.3.3.3 Robust incomplete Cholesky
	4.1.3.3.4 Incomplete Cholesky with second-order corrections
	4.1.3.3.5 Comparison with available incomplete Cholesky packages

	4.1.3.4 Sparse approximate inverses

	4.2 Solving the augmented equations
	4.3 Addressing the ill-conditioning in the search direction
	4.4 Using PCG to compute the search direction in an IPM
	4.4.1.1 Small problem set
	4.4.1.2 The growth of computational requirements on the square footing problems

	Chapter 5 Parallelisation of the solution scheme
	5.1 Overview of parallel computing
	5.2 Parallelisation of the IPM

	Chapter 6 Conclusions and future work
	6.1 Future work
	References

